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A numerical program was developed to compute transient compressible
and incompressible laminar flows in two dimensions with multicomponent
mixing and chemical reaction. The algorithm used the Los Alamos Scien-
tific Laboratory ICE (Implicit Continuous-Fluid Eulerian) method as its
base. The program can compute both high and low speed compressible
flows.

Point by point corrections were included for the errors caused by
truncating the Taylor series during finite differencing. The removal
of these numerical diffusion errors stabilized computations which pre-
viously had diverged catastrophically.

Multicomponent mixing and chemical reaction were incorporated using
an implicit scheme and breaking the time increment into smaller steps.
The mixing was computed over a small time step and was followed by reac-
tion computations over a series of even smaller time steps. This effec-
tively coupled the species equations and gave stable results.

The applicability of the computer program was tested with a variety
of flow problems in tubes. These included flow startup in an infinite
tube, shock tube flow, cyclical pulsations on a mean flow, uniform
entry, coaxial entry into long and short tubes, flow of a center jet en-
tering a sudden expansion, and steady parabolic coaxial entry with mix-
ing and chemical reaction of trace species. The program was not proven
for problems with strongly coupled flow and reaction. A variety of
computer-drawn graphical output was used to display the results.

The numerical program incorporating the stabilization techniques
was quite successful in treating both old and new problems. Detailed
calculations of coaxial flow very close to the entry plane were possi-
ble. The program treated complex flows such as the formation and down-
stream growth of a recirculation cell. An implicit solution of the
species equation predicted mixing and reaction rates which compared
favorably with the literature. A recommendation for expanding the pro-
gram capability to include strongly coupled flow and reaction was made.
A computer program listing was furnished.
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ABSTRACT

A numerical program was developed to compute transient compres-

sible and incompressible laminar flows in two dimensions with multi-

component mixing and chemical reaction. The algorithm used the Los

Alamos Scientific Laboratory ICE (Implicit Continuous-Fluid Eulerian)

method as its base. The program can compute both high and low speed

compressible flows.

Point by point corrections were included for the errors caused by

truncating the Taylor series during finite differencing. The removal

of these numerical diffusion errors stabilized computations which pre-

viously had diverged catastrophically.

Multicomponent mixing and chemical reaction were incorporated us-

ing an implicit scheme and breaking the time increment into smaller

steps. The mixing was computed over a small time step and was followed

by reaction computations over a series of even smaller time steps.

This effectively coupled the species equations and gave stable results.

The applicability of the computer program was tested with a var-

iety of flow problems in tubes. These included flow startup in an in-

finite tube, shock tube flow, cyclical pulsations on a mean flow, uni-

form entry, coaxial entry into long and short tubes, flow of a center

jet entering a sudden expansion, and steady parabolic coaxial entry

with mixing and chemical reaction of trace species. The program was

not proven for problems with strongly coupled flow and reaction. A

variety of computer-drawn graphical output was used to display the

results,

xvii



The numerical program incorporating the stabilization techniques

was quite successful in treating both old and new problems. Detailed

calculations of coaxial flow very close to the entry plane were pos-

sible. The program treated complex flows such as the formation and

downstream growth of a recirculation cell. An implicit solution of

the species equation predicted mixing and reaction rates which compared

favorably with the literature. A recommendation for expanding the pro-

gram capability to include strongly coupled flow and reaction was made.

A computer program listing was furnished.
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Chapter 1

INTRODUCTION

The use of numerical methods to solve the partial differential

equations of fluid flow is a field of great current interest. Advances

in numerical techniques plus new generations of extremely fast digital

computers permit solutions of complex flow problems. These solutions

may be run as computer experiments, allowing the quantification of var-

iables that would be difficult to measure in a physical experiment.

The knowledge gained from such computer experiments can be used by sci-

entists to advance the frontiers of fluids research. At the same time

the expanded capability in solving the flow equations permits treatment

of more complex and hence more realistic problems. Thus numerical

fluid dynamics also has increasing value to the engineer.

Early numerical solutions dealt with steady laminar incompressible

flows, steady compressible flows at supersonic speeds, and transient

one-dimensional flows associated with shock waves. Many of these prob-

lems were selected because analytical solutions were available for com-

parison.

Then problems were run with more complex boundary conditions. An

interest grew in obtaining transient solutions and three dimensional

steady solutions. The current generation of very fast, large storage

machines can treat some unsteady problems in three dimensions with

1
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reasonable computation times. However, finding a means to display such

solutions is a formidable problem in itself.

The mathematical problems of stability and convergence have also

increased with problem complexity. The nonlinear nature of the differ-

ential equations precludes a rigorous analysis to characterize the va-

lidity of the numerical solution. Thus the researcher is often forced

to identify a stable, "reasonable-looking" solution as a valid solu-

tiono This is not always true, but in the absence of rigorous proofs,

it is a reasonable assumption.

Detailed computations of turbulent flows are presently unattain-

able. Turbulent flows consist of a myriad of transient, three dimen-

sional fluctuations superimposed on a mean flow. Ignoring the trans-

ient nature of the fluctuations and reducing the dimensionality from

three to two are already severe approximations to the actual physics

of the flows. The turbulent behavior is dependent upon small scale

motions. The extremely small mesh size, hence large numbers of grid

points, required to resolve the small-scale turbulent motion demands

enormous speed and storage capabilities.

Many flows of interest to engineers are in the turbulent region and

these practical problems require solution. The need has been met by us-

ing semi-empirical models and curve fits of data to evaluate the turbu-

lent coefficients. This process usually includes an order of magnitude

analysis to cast out some stress components. A minimum grid size is

chosen consistent with computer capabilities, and the effects of smaller

scale flows are expressed as eddy viscosities. The method often works

well for steady state problems where the model is valid and within a



3

parametric range embraced by the data. Extrapolation of such analyses

to a wider operating range is often unsatisfactory. Transient problems

involving the generation, propagation, and dispersion of turbulent

quantities have been formulated, but little has been done in solving

this type of problem, again due to formidable computational problems.

Solutions of the rigorous conservation equations are constrained

entirely to the laminar region. A-major current goal in numerical

fluid dynamics is the solution of the complete laminar conservation

equations for various sets of initial and boundary conditions. In add-

ition, combustion and pollution problems have stimulated interest in

reacting flows. And in some cases, such as acceleration of gaseous

flows to high speeds or pulsatile flows, simplifying assumptions re-

garding compressibility can not be made. Gas phase reactions can cause

energy release that couples with the fluid dynamics through compression

effects. Hence a general numerical program to deal with these types of

problems is of interest and has been pursued in this work.

A major problem in dealing with transient flows at all speeds is

that the full conservation equations can exhibit the behavior of the

three classes of partial differential equations, depending on the nature

of the physical problem being described. Transient slow flows which are

appreciably influenced by viscosity are parabolic in nature. Steady

subsonic flows are described by elliptic equations. Subsonic flows with

wave propagation and all supersonic flows are hyperbolic in nature. The

difference equations which represent the differential equations gener-

ally require a method of solution that depends upon the class of equa-

tion. Thus a scheme that successfully solves hyperbolic equations may



fail in the elliptic region. Mixed flows of variable nature are diffi-

cult to solve numerically.

The conservation equations governing the flow of multi-specie re-

acting fluids are given below in tensor form. Gravity forces are neg-

lected, gji is the metric tensor, and the comma (,) denotes covariant

differentiation. Symbols are defined in the nomenclature.

Mass: = - (pvj) (10-1)

a(pv( v gji jlMomentum: -a( (pv v i  _ jip i ,i (1.0-2)

Total Energy: (pE) (pvjE) - (Pv) - qj.- (rmn g v)
t ,J ,j nj ,m

(1.0-3)

Mass of Kth Specie: a(PK + (r (1.0-4)at -- (nK) + (rK) (1.0-4)

The above equations all contain an accumulation term on the left hand

side which is equated to various fluxes on the right hand side. The

fluxes are convective or diffusive or arise from the action of pressure

forces and viscous stresses. In the species equation a source term

(rK) is included to take chemical reaction into account,

For a compressible Newtonian fluid the viscous stress tensor is,

ji 2 iv m mj ni
P 98 v + _g g (v + v3 ,m m,n n,m

which may be substituted into the momentum and energy equations. These

equations comprise the set to be solved for various initial and bound-

ary conditions.

This thesis presents numerical studies of transient, two dimen-

sional, confined flows with no constraints on fluid compressibility or



flow speed. The basic algorithm was derived at the Los Alamos Scien-

tific Laboratory f(LWk-L The diffusion and reaction of species is in-

cluded herein to &ro:den the range of application of the computer code.

The purposes of this thesis are,

(1) To develop the partial differential component equations

through finite diffeecing and to formulate the algorithm;

(2) To derive and demonstrate a nonlinear truncation error correc-

tion to stabilize slsut'ons;

(3) To demonstrate the wide applicability of the algorithm by com-

paring numerical solutions with other analytical and numerical solutions

for the following problems:

(a) Startup of incompressible flow in an infinite tube;

(b) Propagation of shock phenomena after removing a diaphram

separating high and low pressure gases;

(c) Development of incompressible flow from rest when the axial

pressure gradient has a mean component and an oscillatory per-

turbed component;

(d) Development of the incompressible boundary layer in the en-

trance of a tube subjected to a uniform input flow;

(e) Calculation of steady-state flows with trace (decoupled) chem-

ical reactions for fully developed coaxial entry,

(4) To present transient and steady state solutions of compress-

ible and incompressible slow speed tube flows with uniform coaxial

entry;
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(5) To present transient and steady-state solutions of the incom-

pressible and compressible flow of a slow speed center jet into a con-

fined tube of larger diameter;

(6) To furnish a listing of a computer program for future experi-

mentation with flows strongly coupled with chemical reaction.



Chapter 2

LITERATURE BACKGROUND AND CONCEPTS

A comprehensive review of publications on computational fluid

mechanics would be a major undertaking and inappropriate to the intent

of this thesis. This section will discuss some papers on concepts of

stability and accuracy of difference schemes plus methods of solving

compressible flows which can extend into the subsonic region. Some of

the major techniques developed at the Los Alamos Scientific Laboratory

to treat compressible and incompressible flows will be discussed, lead-

ing to the ICE technique for flows at all speeds.

All attempts to produce computer solutions which describe fluid

flows are faced with the mathematical problems of existence, unique-

ness, convergence, stability and accuracy of the solutions. The prac-

tical application of the numerical computation is to describe a physi-

cal problem. In the case of fluid flows, the use of the full conser-

vation equations gives the greatest confidence that the physics of the

problem are adequately represented. Since the conservation equations

are a set of nonlinear partial differential equations, the mathemati-

cal problems mentioned above have not yet been resolved.

Roache (45) has considered this problem aod concluded that physi-

cal intuition, heuristic reasoning, and numerical experimentation com-

prise a reasonable alternate approach. Since a goal of this work is



to develop and test a program applicable to physical problems of inter-

est to engineers, the same philosophy is adopted here.

A. Concepts of Stability and Accuracy

The paper of Courant, Friedricks, and Lewy (12) provided the basis

for constructing stable difference schemes. Elliptic, parabolic, and

hyperbolic equations were treated. According to Lax (37), the authors

were primarily interested in proving the existence of solutions to dif-

ferential equations by taking solutions of finite difference equations

to the limit of smallness. Their analysis of hyperbolic equations de-

fined a "domain of dependence," a region of information on space and

time coordinates which must be considered to define the value of a var-

iable at a point. They showed that the domain of dependence of the

difference equation must include the domain of dependence of the dif-

ferential equation. Otherwise numerical indtability will occur. In

simpler terms, instability will arise if the grid spacing AZ is so

large that information can not propagate from one point to the next in

the given time increment At.

The above concept is expressed in the Courant number. The speed

of propagation for compressible problems is the speed of sound, a.

Then the Courant number restricts

At
a < 1AZ

if stability is to be possible. In the case of incompressible flows,

the formulation of the equations suppresses the sonic signals. The

parameter propagating the information is the local fluid velocity, U.

Then



At
U Z<

is the stability criterion.

The presence of shocks in flows presents computational problems

using the inviscid equations because the primary variables 
are discon-

tinuous over the shock front. This requires a set of internal bound-

ary conditions obtained from the Rankine - Hugoniot equations to con-

nect the variables over the shock front. The shock surface is usually

positioned between grid points, and its exact position can be found

only by a trial and error process. Von Neumann and Richtmeyer (51)

introduced the concept of adding an artificial dissipation term to the

equations. This caused the shock front to smear over a few grid

points, eliminating the discontinuous front and the associated compu-

tational headaches. Shock strength and position automatically arose

from the fluid flow calculations. A properly defined dissipative func-

tion produces negligible effects on the shock velocity and strength and

no effects outside of the shock region. A real shock is slightly

smeared due to heat conduction and viscosity effects. If shock spatial

details are the primary goal of the computational exercise, the artifi-

cial dissipation term would interfere. For most shocked flows this is

not of interest.

Von Neumann and Richtmeyer introduced the dissipative function, q,

as an additive term on pressure in the momentum and energy equations.

For unsteady one-dimensional flow, the equations were

Dp (P + q) (2-3)
P at 8_Z



10

3V
E = _ (p + q) (2-4)

at at

The dissipation term chosen was

(KAZ)2 U U a
q = - (2-5)

This functional form produced a shock wave of thickness O(AZ), satis-

fied the Hugoniot relationships, and vanished away from the shocked

region.

The theory of the stability of linear difference equations with

constant coefficients was developed by Von Neumann at Los Alamos during

World War II. The first detailed explanation of the method was pub-

lished in the unclassified literature by O'Brien et al. (40). The

authors illustrated Von Neumann's method of substituting an exponential

series solution into the difference equation and examining the result

for regions of time and space grid sizes which assured that the expon-

ential terms would not grow with time. This theory will be discussed

in more detail in the later section on stability analysis.

Cheng (11) examined computational stability, accuracy, and consis-

tency of difference formulations. His discuss-ion was based on Lax's

equivalence theorem which states that, "In the limit At -+ 0 and

AZ + 0, the solution of the difference formulation converges to the

solution of the differential problem if, and only if; (1) the differen-

tial problem is well-posed, (2) the difference and differential formu-

lations are consistent, and (3) the computation is stable." Cheng

analyzed the aspect of consistency in terms of the truncation errors

inherent in the particular finite difference form. The truncation



error is a measure of disagreement between the partial differential

equation and its finite difference equation, Cheng recognized the

truncation error terms as dissipative, dispersive, and of higher order,

then analyzed stability in a heuristic manner, looking at the sign of

the dissipative term to determine whether a difference scheme was

stable or unstable. A similar analysis by Hirt (29) is used in this

thesis and is discussed later. Cheng calls the dissipative term a

"pseudo-diffusivity." It is not Von Neumann's artificial viscosity

which is an added term. It is implicitly contained in the finite dif-

ference formulation.

After an analysis of accuracy, Cheng concluded that viscosity con-

trolled problems should have finite differences of second order accur-

acy which reduce the pseudo-diffusivity. Thus the true viscous effects

would not be masked by numerical error. He also concluded that steady-

state or slow transient solutions to the Navier-Stokes equations could

be accurately computed. However, he showed that the second-order ac-

curate Lax Wendroff method gave appreciable amplitude and phase errors

when applied to a rapidly oscillating problem with known analytical sol-

ution. This specific example indicated that caution is required when

solving rapidly changing time-dependent problems.

A more detailed linear analysis of amplitude and phase errors was

conducted by Fromm (20). He examined the unsteady vorticity formulation

of the incompressible flow equations by substituting a Fourier component

solution and examining the stability of the high frequency components.

He concluded that first order accurate formulations had appreciable

amplitude and phase errors in the smaller modes, and that even second
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order formulations had significant phase lag at the smallest mode, 2AZ.

This caused a dispersion and appearance of point-to-point waves. Fromm

proposed a fourth order scheme which showed superior error characteris-

tics. He also proposed using a linear combination of two schemes with

opposite phase error to cancel the error. This promises to be a fruit-

ful area for future research.

B. Compressible Flow Schemes

Some of the schemes currently in use to treat transient compres-

sible flows are briefly discussed in this section. Brailovskaya (5)

presented an explicit differencing scheme for the laminar unsteady com-

pressible Navier-Stokes equations which was first order accurate in

time and second order accurate in the space variables. The scheme was

three level. Intermediatevalues for mass, momentum, and energy fluxes

were calculated explicitly, then advanced time values were computed us-

ing the intermediate values in the flux and pressure terms while reus-

ing the old dissipation terms. A computation was shown for a cavity

problem where a wall impulsively started moving across a square cavity,

setting up a vortex within the cavity. Little detail was shown, but a

steady-state streamline plot at a Reynolds number of 500 looked similar

to other solutions of this problem. The lowest Mach number of the mov-

ing wall was 1/3. It was not stated whether the fluid was considered

to be at rest on the walls.

Kurzrock and Mates (35) presented a method which they claimed had

storage and computation speed advantages over Brailoyskaia's method.

The continuity equation was written implicitly, but the new fluxes were
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calculated explicity from the momentum equations and then used directly

in continuity. Hence the scheme was computationally explicit. In

fact, trial runs with an explicit form of the continuity equation gave

the same stability limits as the implicit form. Evidently stability

was controlled by the momentum and energy equations. The method was

used to calculate a shock propagating inside a tube including boundary

layer effects and for an external flow problem describing the growth of

a shock on the leading edge of a flat plate suddenly accelerated to

supersonic speed. An attempt to run the latter problem at subsonic

velocity was thwarted by instability and long computation times.

A method by MacCormack (39) is applicable to compressible flows

and has second order accuracy in both time and space. It is a three

level method of the Lax-Wendroff type, in which an approximate set of

values at t + At is calculated from the starting values using spa-

tial differences that step forward. The approximate values are then

used in the second half of the scheme to calculate the true values at

t + At from differences that step backward. It has been used with

supersonic and transonic flows. Although this writer has had personal

communications with several researchers who indicated the method could

be used for very slow flows , publications have not been found to ver-

ify the low speed behavior of the scheme.

The Lax-Wendroff scheme referred to in the previous paragraph de-

serves further mention. It is used with the inviscid equations rather

than with the full Navier-Stokes equations. The one dimensional form-

ulation was presented by Lax and Wendroff (38). Burstein (9) extended

the scheme to two dimensions, but found that artificial viscosity was
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needed to stabi3-2 , computations. His sample calculation of supersonic

flow over a blunt bo'ji bad a subsonic region which was handled success-

fully. The metihod i-s- Geond order and has superior accuracy. It is a

three level scheme requiring considerable averaging and is difficult to

use.

Although the i-Lhods discussed in this section have varying suc-

cess in the subsonic region, they are all constrained by the Courant

condition. For one$-urmension, this is approximately

(JU + a) < 1 (2-6)

Thus the time increment is constrained by the large value of the speed

of sound even though the flow velocity may be very small.

C. The PIC, MAC, at2d ICE Methods

The Los Alamos Scientific Laboratory (LASL) is a pioneer in the

field of numerical fluid dynamics. Much of the early work performed

there was done in the support of weaponry for World War II. Open pub-

lications began to appear in the 1950's. This section introduces three

of the LASL numerical fluid dynamic schemes, the PIC (Particle-in-Cell)

method for compressible flows, the MAC (Marker-and-Cell) method for in-

compressible flows, and the ICE (Implicit Continuous-Fluid Eulerian)

method for compressible flows at all speeds. The numerical program

developed in this thesis is based on the ICE technique.

The PIC method was developed in the 1950's, but a later publica-

tion by Amsden (2) is used for this discussion. The PIC method was a

hybrid scheme which permitted Lagrangian particles to flow through an

Eulerian mesh, carrying with them the conservation prope-rties of mass,
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momentum, and energy. The computational fluid was thus not a contin-

uum, but an assembly of particles. Multiple fluids could be denoted by

different types of particles. The conservation, state, and thermody-

namic properties of the contents of each cell were calculated using the

number and types of particles lying within the cell boundaries. 
The

number of particles in a cell varied due to flow and if 
the mean number

was low, the cell properties oscillated in a bounded manner. 
The mass

of each particle remained constant, so mass was automatically 
conserved

by the method. It was thus not necessaty to separately solve 
the mass

equation.

The calculation took place in two phases. The first phase was

Eulerian and presumed no particle movement. The steps were:

1) Compute the cell pressure from an equation of state

pn = p (, ) (2-7)

where n denotes the time coordinate index.

2) Estimate a tentative new velocity U from the equations of motion

with advection terms removed. This step required an artificial viscos-

ity for stabilization.

3) Estimate a tentative new internal energy I neglecting advective

terms in the energy equation. This ended the Eulerian phase.

The Lagrangian phase allowed particle movement and included ef-

fects of particles changing cells. The steps were:

1) Calculate the total momentum (pU)tot of each cell containing N par-

ticles by
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N

(pU)tot =i UmK (2-8)

K=1

where mK was the mass of the Kth particle in the cell. Likewise

calculate the cell internal and total energies,

2) Move the particles by assigning to each an effective velocity Ueff

which was a weighted average of the surrounding velocities U: then

translate the coordinate Z by

n+l = Zn + U efft (2-9)
eff

3) If a particle crossed a boundary, adjust the cells for the changes

in mass, momentum, and total energy, Then calculate the final veloc-

ities by dividing the adjusted momenta by the adjusted masses. Use the

final velocities to calculate the final internal energies from the

final total energies. This concluded the process.

The original concept of this method arose from particulate kinetic

theory, the details having been developed over a long period of numeri-

cal trials. Besides the added artificial viscosity q, the method had

an implicit dissipative term (Cheng's pseudo-diffusivity) which had the

form pjUIAZ in the Z direction. This term stabilized the compu-

tation, At low velocities the implicit damping term became small and

instability resulted. In addition the Courant condition restricted the

time increment size, so the method could not be used successfully for

slow speed flows.

The method suffered from accuracy not only due to the first order

differential approximations but because a continuum flow was repre-

sented by motion of a small number of particles. It did have the
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capability of treating flows with more than 
one material and flows in-

volving large fluid distortions, In addition, the particles showed the

positions of the fluid, and their discrete 
translations could be filmed

to pictorially show the fluid motion.

Amsden (2) presented calculations of high speed wakes, shock in-

teraction with a blunt object, explosive burning, and high velocity jet

splash and particle impacts. The pictorial solutions looked qualita-

tively correct. Evans and Harlow (16) calculated the flow over a cyl-

inder in a channel using PIC. The cylinder was impulsively accelerated

to steady Mach numbers of 2, 4, and 6. The streamlines and shock posi-

tions at steady state compared well with experimental values. Harlow

and Meixner (28) calculated the rise of a hot gas bubble from the

earth's surface, modeling a nuclear explosion in the atmosphere. The

solution showed the shock front breaking away from the heated gas front

and vertical stratification within the bubble due to shock-rarefaction

interactions.

A natural progression of the PIC method was to eliminate the par-

ticles as carriers of conservative properties and to use a continuum.

This was done by Rich (43) and later by Gentry et al. (21). They re-

tained the same calculation sequence as PIC but solved the equations

in integral form, relating the change of the property within the cell

to fluxes through cell surfaces. The equation for conservation of

mass was required in the second phase of the calculation since the

mass-carrying particles were discarded. The absence of particles

identifying the fluid made two-fluid computations difficult. This

problem was treated by Rich by initially specifying the,position of
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the interface between two fluids, then tracking the interface as the

problem progressed. Gentry's scheme, called FLIC for Fluid-in-Cell,

optimized the computation for one fluid and prescribed 
a treatment for

boundaries that required partial cells. Problems of supersonic flow

over obstacles and diffraction of a shock travelling down a Z-shaped

tunnel compared well with experimental results.

Concurrently with the PIC method for compressible flow, the MAC

(Marker-and-Cell) method was developed for incompressible flow. A

later summary document is Welch et al. (55). The differential form of

the conservation equations were used in MAC instead of the integral

form. A Poisson equation for pressure was formed by substituting the

momentum equations into continuity. The Poisson equation was solved

implicitly by relaxation to a specified degree of convergence to give

the advanced pressure field. A technique developed by Hirt and Harlow

(31) was used to correct for the lack of exact convergence. Pressure

signals in incompressible flows are presumed to propagate instantly to

all other points in the flow field. Thus the pressure at any point is

a function of the entire velocity field, not just the local field. The

implicit nature of the pressure equation served to carry the flow in-

formation throughout the pressure field.

After the iteration on the pressure field, the new velocities were

calculated from the advanced time pressure term and the old shear terms.

Then the particles were moved according to their weighted average veloc-

ities acting over the time increment At. The particle concept from the

development of PIC carried over into the incompressible program, but in

MAC, like FLIC, the particles served only as markers to identify the
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position, type, and motion of the fluids. The presence of a free

liquid-gas surface was included, and the primitive variables of veloc-

ity and pressure were retained to facilitate this capability. Later

improvements in the MAC numerical code led to the simplified MAC or

SMAC method (3).

A fascinating series of numerical problems were pictorially pre-

sented in Welch et al. (55), Harlow and Amsden (26), and Amsden and

Harlow (3). These included a wave breaking on a sloping beach, a wall

of water hitting an obstacle, water flow from a sluice gate, formation

of a hydraulic jump, waterfalls, fountains, and others. Further appli-

cation to multiple immiscible fluids was demonstrated by Daly (13) who

studied Rayleigh-Taylor instability in a system with a dense fluid in-

itially layered above a lighter fluid. Mushroom-shaped spikes of fluid

were formed in the numerical calculation as the fluids began to invert

to a stable configuration. These spikes were observed experimentally.

Quantitative comparisons of growth of the protuberances were favorable.

The MAC technique was extended by Hirt and Cook (30) to three dimen-

sions including thermal buoyancy. Using 3344 cubic cells they computed

flows over and around configurations of rectangular solids. Such cal-

culations could be applied to meteorology and atmospheric pollution

problems. They used the cell markers to follow the dispersion of a

tracer from a point source. The results were displayed in perspective

drawings.

The MAC method has been used by investigators outside of LASL.

Donovan (14) computed the transient formation of a laminar vortex in a

rectangular cavity where one wall was impulsively accelerated to a
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constant velocity. Counter-rotating vortices appeared in the corners

away from the moving wall, and steady state velocity components 
agreed

with experimental data. Phillips (42) applied the method to impulsive

and pressure-driven oscillating flows in a sudden 
expansion and in a

tee. His interests were mainly numerical and although he recognized

the existence of the truncation errors he did not try to remove them.

Experimental comparisons were not available. Fernandez (17) used the

MAC scheme to study pulsatile, incompressible flow in a bifurcation 
as

a model of arterial flow. A dual grid system was mated at the junction

of the bifurcation to carry the flow off.at an angle. His solution

showed a region of high shear stress at the inner (bifurcation) wall

and a recirculation eddy at the outer wall which disappeared during

part of the pulsation. These fluid phenomena were of interest in the

formation of deposits in blood vessels,

The ICE (Implicit Continuous-Fluid Eulerian) method was presented

in 1968 by Harlow and Amsden (27), then revised and improved in a later

publication by the same authors (25). This is the only method found

which could treat compressible flows at all speeds. The method com-

bined concepts developed through the evolution of the compressible and

incompressible methods discussed earlier. The differential forms of

the equations were used and the pressure field was found implicitly as

in MAC. The calculation of all other variables then could be performed

explicitly. The Courant restriction applied to local.fluid velocities.

The method and program will be described in detail later. The authors

performed in a truncation analysis for the one dimensional unsteady

equations and suggested the addition of terms to correct;these errors
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and improve stability and accuracy. An example problem of an explo-

sion leading to shock waves (compressible high speed flow) and a rising

hot gas bubble (semi-compressible slow speed flow) was presented.

The problem of multispecie chemically reacting flows can be ap-

proached in two ways depending mainly on the kinetic models, One ap-

proach is to define a set of detailed kinetic reactions and to 
con-

struct a model of blocks describing flow, reaction, and physical proc-

esses such as evaporation. The detail required in each block is

specified according to current modeling capability and computer cap-

acity. These blocks are then coupled together to describe the total

process. The work of Edelman et al. (15) illustrates this approach.

Another method is to write the full conservation equations in rigorous

form with a global chemical reaction. Seider (47) has done this for

dilute specie reactions. Both Edelman and Seider consider steady prob-

lems only. In his discussion of laminar flow reactions, Williams (56)

points out that neither approach can be verified as the correct one.

This thesis uses the second approach without the constraints of steady

state or trace concentrations of reacting species.

This concludes the review of literature concepts and LASL devel-

opments pertinent to the present study. Several texts were used as

sources of additional information. This includes Richtmeyer and

Morton (44) and Von Rcsenberg (52). The LASL monograph on fluid dy-

namics (26) and the excellent current text by Roache (45) have provided

much physical and numerical insight. More information on the numerical

methods developed at LASL may be found in the annotated bibliography by
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Harlow (24). The text by Bird, Stewart, and Lightfoot (4) was used

extensively to guide the mass transfer formulation. Much general in-

formation on boundary conditions and numerical methods was found in

Schwab (46).



Chapter 3

FORMULATION OF THE PARTIAL DIFFERENTIAL EQUATIONS

A. Tensor Forms

The conservation equations which mathematically describe the class

of unsteady two dimensional problems treated herein were listed in the

introduction as equations (1-1) to (1-4). The stress tensor was equa-

tion (1-5). These equations will now be developed into the conven-

tional notation of partial differential equations. A nondimensionali-

zation will then be performed which is appropriate to the class of

problems to be treated.

The equation for conservation of momentum (1-2) requires convari-

ant differentiation of the viscous stress tensor. The differentiation

is performed holding viscosity constant, although in the numerical

problems the viscosity can be varied from point to point. This is

equivalent to assuming that all spatial gradients of the viscosity co-

efficient make negligible contribution to the momentum viscous terms.

Such an assumption is reasonable for many gas.mixing problems. The

differentiation gives

ji 1 jim mi
T = - 1 ]g j iv . - g v (3-1)

,i 3 ,mi ,mi -

Using the identity

23-
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mi j ji m jmp ki s (3-2)
,m i  mi- pksg V,m

in equation (3-1) gives

T - 4 Igvmi + mp gki s(3-3)
,i 3 ,mi pks ,mi

which is substituted into (1-2)o

The equation for conservation of total energy also requires covar-

iant differentiation of the product of the stress tensor and velocity.

With a little manipulation this can be shown to give

mn v) = (km q) mp n v (3-4)
,m m ,m I m ,m

The last term can be modified by the identity

n 1 (vnv
,p n 2 n)

,P

Hence

mn J[ im k mm q mp n ' ,m

(3-6)

This relationship is then substituted in (1-3).

The use of equations (3-3) and (3-6) allows the viscous stress to

be removed from the momentum and'energy equations, being replaced by

velocities and velocity gradients. The conduction term may be written

using Fourier's Law,

q = - kgjmTm (3-7)

For an ideal gas

I = CvT (3-8)
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so

qJ = _ k gjm3 (3-9)
,j CV jm

This removes temperature as a variable in the energy equation.

The right hand side of the Kth species equation (1-4) may be ex-

panded using

(nK) = (jK) + PKv (3-10)

For multicomponent mixtures of N ideal gases the mass diffusion term

is

(j C2

(jK)= - MRMKDKR S(XR) (3-11)

R=1

The subscript R as used here does not denote a tensor quantity. The

reaction rate is written as a generation term. For a second order re-

action

(rK) = kp AB
K k L (3-12)

This is valid for the stoichiometry of A moles of specie K reac-

ting with B moles of specie L. The rate coefficient k' in mass

concentration units may be related to the rate in molar units by suit-

able ratios of molecular weights. Equations (3-10), (3-11), and (3-12)

may be used in (1-4).

With all of the above substitutions, the final set of continuum

equations in tensor form which mathematically describes unsteady com-

pressible flow problems with multispecie diffusion and chemical reac-

tion is
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Mass:

=- (pv J )  
(3-13)

Momentum:

(pv )  
_ (pv v) gi jip + 4 ji k pjsp km i

at ,i , 3 ki pki ,ms

(3-14)

Total Energy:

a(pE) (pvE) (Pv) + k gjm
t J 'J CV ,jm

Sq v k k m 1 mp n s (3-15)
kL+ )j m) mq 2 v- ggsvgv (3

Multicomponent Species:

N
(PK) (i) + js AB
at pKv  + _J DKRg  (X

R )  + K LpKL
' 3 - R=1 , j

(3-16a)

In some instances the multicomponent diffusion coefficient may be re-

placed by an effective binary diffusion coefficient as described in

Bird et al. (4). The species K is assumed to move into a mixture

which may be treated as a single fluid R containing no K. The mix-

ture is denoted by R minus K (R-K). Then the conservation of

specie mass is expressed by

Binary Species:

a(P K j) + K K R Kj K + k PAPB
at PKv + MR-K K R-K j s  )  + k' pAB

(3-16b)
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B. Dllj itJfonal Component Equations

Til final set of dimensional component equations will be written

in the ight cylindrical system of coordinates to properly describe the

tube flw studied herein. Hereafter sub- and superscripts are not

used N ltensor notation. Also hereafter overbars will denote dimen-

sioned (Iquantities, and r and z are also dimensioned.

p = _ a (rpvr) - a- (pVz) (3-17)
- r 2r r az z
9t

r ar r z r z rat

+ __[-, r Lz (3-18)
D r r Dr r Dz _ 9z z ar

(P )  1 3 -- 2 aP
a r (rpvr) v - pv 2 z

S r Dr r z Dz z / z
at

4- r r--- (3-19)

-r r r r r z r

- IaE a + k D I
r V (r ) r z + +r -vr+k

. r = rjr 8z - z r Dr r -- r
atC

2 -- _v (rv ) + 11 + r D -2 + --

r r at r 8E 2 a r v z z zI

- k 1 2 "- + - +--VP z  RVz 3r ( r v r )  --+ z

12- a 2 -2
- z vr + 2v + jiv rv (3-20)

2 az \r zr ar



28

-;K) N 1 a - -- -(--- r aXR

r r z K z r r~K ar
atR=

+ Mz MRMDKR j + Pk KL (3-21a)
R=1

a (r) a 1 -K

- r @r (KPKrz r r r MR-KMK K R-K

+ M F R-K +,-A-B (3-21b)
+-z R-K K R-K + K PKL

Two additional equations are needed. The total energy is composed

of internal and kinetic energy. Then the internal energy is calculated

by

I = E -+ (3-22)

An equation of state for an ideal gas is

P = (y - 1)pI (3-23)

The set from equation (3-17) to (3-23) includes all equations necessary

to describe continuum flow. Boundary conditions will be treated later.

C. Dimensionless Component Equations

The partial differential equations will now be made dimensionless.

A set of characteristic values are selected as follows:

Length = R the tube outer radius

Velocity = V usually a known input velocity

Time = t the cycle time or period for oscillating flows.

If the flows are not oscillatory, this may be set

to one, or any other time characteristic of the

problem
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State Conditions = p , P , M , I , T , C the conditions of a

reference stream.

These characteristic quantities are used to define dimensionless vari-

ables.

t = t/t (3-24)

V = /V (3-25)
r

U = v/V (3-26)

R = r/R W  (3-27)

Z = z/R (3-28)

p = P/* (3-29)

PK K/P (3-30)

- -2
E = E/V (3-31)

-2
I = I/V (3-32)

k' = '.t/ (p*)-A-B (3-33)

P = (P - *)P(3-34)

T = (T - T*)/T* (3-35)

C = /i (3-36)

M = , (3-37)

The temperature and internal energy are related by

I= RC*/[(y -. I)M*] (3-38)

This permits definition of a reference internal energy if a reference

thermodynamic state is specified.
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When the set (3-24) through (3-37) is substituted into the compon-

ent equations, several dimensionless groups arise. These are defined

as follows:

Euler Number NEu = (3-39)

Prandtl Number Npr = (3-40)

Reynolds Number NRe = (3-41)

Schmidt Number N - (3-42a)

or - (3-42b)

K R-K

Modified Strouhal N'S£ (3-43)
Number

The Strouhal Number as normally defined is

NSk = 2?Ri/i

It appears in cyclic phenomena such as acoustics, and it ratios the ac-

tion time of a characteristic velocity acting over a characteristic

distance to the time required for a cyclic perturbation. Since t

corresponds to 1/f, then NSE is 1/2n times the normal definition

of a Strouhal Number.

With these definitions, the dimensionless component equations may

be written,
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Mass:

N a (RpV) - (pU) (3-44)S at aR az

R-Momen tum :

N aV) = 1 (RV2 ) a (pVU) -N 3P
Sz at R aR aZ Eu DR

+ N _a a (RV) + aU+ a (3-45)NRe 3 R R aR az az Dz ajR

Z-Momentum:

a(oU) 1 a a 2. PN 3 (RpVU) (pU) N aP
Sk at R DR Z Eu DZ

+ (RV)R R (3-46)
NRe 3 Z aR (RV) RR 9Z aR

Total Energy:

a(oE) a (RVE)
N (RpVE) (pUE)S9 at R aR az

+ 1 R -N(P + 1)V + 1 I
R aR Eu N N R

Re Pr

(RV) + V V + 1 -- (2V + U) + U3\ R ZR Z 2 R Z

+ N u(P + 1)U + 1- a9l
Z I Eu N 3ZNRe Pr

21 3 2 aU-(RV) + U + a(V + 2U2) + V (3-47)R DR az 2 az

Multicomponent Species:

a(pK) 1 a a 1 CN X
Si at R aR K K R R M NeN

N
a C MRNK XR AB+ Z M NNReN az + NS PKPL

R=1
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Binary Species:

D(PK )  1 [R1 R C MR-K
N -a-(Rp V)S( .R D K 3Z (PKU) +  R aR M NReNSc C

+ _ MR-KK - + Nsk PKPL B (3-49)

Internal Energy:

-I = E - [V 2 + U2 ] (3-50)

Equation of State:

P (Y N - 1 (3-51)
Eu

A few points should be made about these equations. The equations

as shown are in conservative form, relating the change of a quantity at

a point to fluxes and forces acting on an infinitesmal surface enclos-

ing the point. Cheng (11) has stated that only this form gives satis-

factory accuracy in numerical solutions of the full Navier-Stokes equa-

tions, A complete energy equation using temperature as the dependent

variable can not be written conservatively. Hence total and internal

energy is used.

Isothermal incompressible flow does not require an energy equa-

tion, But calculations of compressible flows must include an energy

equation, and the energy couples with the fluid dynamics through the

equation of state. The state equation used herein applies to ideal

gases, and it and the energy equation are bypassed for incompressible

calculations. Only equation (3-51) need be changed to accommodate

non-ideal fluids. Any equation of state which properly describes the

fluid may be used. The LASL monograph (26) discusses some other state
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equations, including one describing the behavior of a normally solid

material flowing under ultra-high velocity impact4

The next chapter depicts the finite differencing of the equations

and outlines the method of their solution°



Chapter 4

FORMULATION OF THE FINITE DIFFERENCE EQUATIONS

A. The ICE Cell and Computational Mesh

The continuum equations are converted to discrete equations by

casting a mesh over the field of interest and defining the variables

at select locations on the mesh, For the ICE system, the mesh con-

sists of a series of cells, dimensioned AR and AZ in the radial

and axial directions, respectivelyo These cells are actually cross-

sections of annular rings where angular variations are presumed neg-

ligible. A typical cell is shown in figure 1. The cell coordinates

are indexed at its center, i counting cell rows increasing in the ra-

dial direction toward the wall, and j counting cell columns increas-

ing in the downstream axial direction. The axial and radial velocities

are defined on the middle of the cell walls, and all the other vari-

ables are defined at the cell center. This system is also used in the

MAC scheme. The cell aspect ratio is

RA = AR/AZ (4-1)

There is no constraint that the cells be square.

The temporal and spatial coordinates of each variable is denoted

by a superscript and two subscripts. The superscript denotes time,

with n being the current time t, and n + 1 being advanced time

34
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t + t,' Current variables are called explicit, and advanced time vari-

ables are called implicit. The two subscripts denote radial and axial

position, respectively, A typical cell-centered variable such as den-

sity in the (i, j)th cell is p n . The downstream axial velocity on
i,J

that cell is U,j+/2 and the radial velocity closer to the center-

line on that cell is Vn - o If a value for a variable is required

at a location where it is not defined, a simple average is used. Thus

n 1 (U n + n
U U + Ui,j 2 i,j-1/2 i,j+1/ (4-2)

n 1 Cn n n n

Pi+1/2,j-1/2 i+, i, + i+,j- I i,j- (4-3)

When a differential is required at a location such that averaging is

necessary, the rule is: form the differential, then perform the aver-

aging. For example,

n n n n n n
__n i+l/2, Pi+1/2,j- 1  i+1,j i,jPi+l, j-l i, j-

i+1/2,j+1/2 AZ 2AZ

(4-4)

The placement of velocities at locations different than the other

variables has a number of advantages. First, it provides a convenient

arrangement for defining centered velocity differences. Consider the

spatial first derivative, DU/3Z, to be evaluated at the point (i, j).

Presume that all variables are defined at (i, j) including U. Then

the differential may be approximated at least three ways by Taylor Ser-

ies expansions around the point (i, j).
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n U n n U .

Forward 1 Z 1 + terms O(AZ) (4-5)

n nn U -U

i,j

d n - Un

Centered Il ,j 2 iZ + terms O(AZ) (4-7)
i,j

The centered difference has higher accuracy, which is desirable. But

the two values of U are separated by 2AZ, and the value of U at

the point (i, j) is not used at all. By defining variables on the cell

as shown in figure 1 the cell centered differential becomes

Un  n
U n  i j1  2 - 'U, 1  + terms O(AZ)2 (4-8)ZIij AZ

and the values of U are separated by only AZ. Since the values are

closer to the point where the differential is desired, this approxima-

tion is better than (4-7). First derivatives of velocity are impor-

tant quantities, With all other variables defined on the cell centers,

the opportunity to use the form (4-8) occurs frequently.

Another advantage of the ICE variable placement is improved sta-

bility. Richrmeyer and Morton (44) show that skew velocity placement

such as in the ICE method provides less restriction on stable values

of At and AZ than does defining both velocities at the same point.

The skew scheme is often used for hyperbolic equations.

Finally, the variable placement on the ICE cell provides an aid

to visualizing the physical aspects of the problems. The cell centered
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properties describe the "contents" of the cell. Since the velocities

are defined on the wails, they can be envisioned as carrying the cell

contents through the cell walls.

The cells fit together to form a grid on the field of interest to

the calculation. Such cells are called interior cells. An additional

row or column of cells is added to each boundary. These cells are ar-

tificial, in that they exist only to apply boundary conditions to the

interior cells, Figure 2 shows the calculation mesh with the boundary

cells. Four types of boundaries are shown: wall, symmetrical center-

line, input, and output, These will be discussed later. Since the

first row of cells i = 1 is a boundary row, and the tube centerline

is at R = 0, the radial distances to the inside, center, and outside

of cell (i, j) are

R. = (i - 2)LR (4-9)

R = - (2i - 3)AR (4-10)
1 2

Ri+2 = (i I)AR (4-11)

B. Development of the Poisson Equation for Pressure

With the cell and grid system defined, the finite difference ap-

proximation of the mass equation is written at. the point (i, j) as
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n+l n .. 1 .n+. n+1 n+l

N (ij i i+1/2i+1/2,j i+1/2,j i-1/2Pi-1/2,j i-1/2,j)
St At R.AR

1

( Un+l n+11 n+1

S ij+1/2 i,j+1/2 - ij-/2 ij-1/2)AZ

R V n R o V

Sn n n n n
Pi,j+1/2 i,+1/2 Ai,j-1/2 i,j-1/2 n- (1- ) . + (BM)", (4-12)

Note that the mass fluxes are repeated, first implicitly with super-

script n+l, then explicitly with superscript n. The implicit and

explicit groupings have coefficients 0 and (1 - 8), respectively.

Values of 6' range from 0 to 1 with the value held constant over time

and position for a particular numerical computation. 0 acts to pro-

portion the amount of implicit versus explicit mass fluxing used in

computing the change of cell centered density with time, If 0 = .5,

the equation is time-centered and certain truncation errors vanish.

The term BM is a correction which appears as an added diffusion term.

It may be used to improve the scheme's stability and accuracy by remov-

ing certain truncation errors, or if stability is a problem the 8M

term can provide additional stability at the expense of accuracy.

8 corrections will be discussed in the next chapter.

Before finite differencing the component momentum equations, it is

necessary to define a new variable, which Harlow and Amsden (27) have

called the hybrid function P. The hybrid function is formed from the

equation of state, which has the general functional form
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P = P(p,I) (4-13)

This function may be expanded over intervals around the state (p,I) to

give

P(p + A0, I + Al) = P(p,1) + Ap + AI + terms O(A
IP

(4-14)

The equation of state in finite difference form is

n
pn i, n n  (4-15)

p-1 (4-15)i,j N Eu i, i

Equation (4-14) may be written at the point (i,j), and if the Taylor

expansion is understood to be over the time domain, the differences Ap

and AI are implicit minus explicit values. Defining the left side of

equation (4-14) as the hybrid function i, a tentative implicit pres-

sure, and using (4-15) to evaluate the partial derivatives,

P = n n A n+l n ( i,j n n+l n
P ,j + ij Pij + N ij ij1I 1 5,u 1 1,P il-Eu

(4-16)

The series is truncated after the first order terms, and the isothermal

speed of sound squared is

p n n(( 1 I n

= ( NE u  ij (4-17)

ij

The LASL ICE method excludes the first order difference In+l n

Although most calculations performed herein also discard this differ-

ence, some numerical experimentation is done with the difference in-

cluded. It will therefore be retained in the finite differencing.

Equation (4-16) may be solved for the implicit density. This gives
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p n++ _ 2 - (4-18)

ij ij

With the hybrid furicion P defined, the momentum equations may be

finite differenced. For both the R and Z component equations all

the flux and shear terms are written explicitly. Only the pressure

term is written both implicitly and explicitly, and the hybrid function

is used as the implicit pressure. A proportioning constant r appears

in the momentum equations in the same manner as 0 in the mass equa-

tion.

The radial momentum equation is written at the point (i-1/2,j) as

nn+1 vn+l n n P P

N i-1/2,j i-1/2,j - i-1/2,j i-1/2,j N - T i,j A -1j
NS At = Eu R

P n P n

Eu ARi
N NEu (1 _ p) Li '1  + Bi 1 2,j  (4-19)

Bi-1/2,j is a collection of explicit terms for momentum fluxes, shear

terms, and a truncation error correction VR. Likewise, the axial

momentum equation is written at the point (i,j-1/2) as

n+1 n+l n n -
-P U

N Pij-1/2 Uij-2 Ati,j-/2 ij-1/2 P i,j ij-1
SP = - NEu( AZ

N Nu(1 _ P ij-
EN (1 - AZ) + Di  (4-20)Eu AZ i,j-1/2

Di,j-1/2 collects explicit flux and shear terms plus a correction BVZ

for the axial momentum equation.
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A Poisson equation for P is formed as follows from equations

(4-12), (4-18), (4-19), and (4-20). The coefficients (1 -0) in the

mass equation (4-12) are split into two coefficients, i and (-8). Then

the explicit terms multiplied by (70) are grouped with the implicit

terms multiplied by e to produce differences such as

(R n+l n+l n n
i+1/2 i+/2,j i+1/2,j i+1/2 i+1/2,j i+1/2,j

That is, these terms are differences in time at the same spatial posi-

tion. An identical difference is formed at coordinates (i-1/2,j).

Differences of pU at coordinates (i,j+1/2) and (i,j-1/2) are also

formed. It can be seen that if equation (4-19) is written at the point

(i+1/2,j) and multiplied by Ri+1/2 , the left hand side of the result

contains the difference shown above times N S/At. This is repeated at

the point (i-1/2,j). Equation (4-20) is used at points (i,j+1/2) and

(i,j-1/2)o Thus with a little manipulation, the momentum equations may

be substituted into the mass equation to remove advanced time mass

fluxes while introducing the hybrid function P. After these substitu-

tions are made, the only remaining implicit density is in the time dif-

ference of the mass equation. This may be removed using (4-18). The

result is



Eu i+1/2Pi+lj i-l/2 i.-,+ i,j+l i,j-1 + Gn n 1 1
NS Ri(AR)2  (AZ)2  ij ij In

1 21
-N 2 - 2+ 2ij NS (AR) (AZ)

(4-21)

The term Gj groups a number of explicit terms and incorporates the corrector BM .

\ C. Final Finite Difference Forms

The finite difference equations are shown in their final form. The radii are written using

equations (4-9) to (4-11), and AZ is removed using the cell aspect ratio, equation (4-1). When

a variable is required at a location where it is not defined, the necessary averages are formed.

Most averages are bracketed and easy to detect. Coefficients are extracted wherever possible.

Variables which collect explicit terms are written below. The velocity divergence is used

several places and is denoted by Q ..

n =8 - i i n -i_2 n 1 n Un

i,j 3 2i - 3 i+/2,j 2i - 3 i-1/2,j 2 A i,j+1/2 i,j-/ (4-22)

The two variables used in the momentum equations are

NO



n (R)B' 1 -2i 5 n n 2i- 3) ni-1/2,j i-1/2,j 2 i-1/2,j 2 i-1,ji-3/2 ,j - 2/ iji+/2,

R + n n n

,j ,j ,j- Pi,j-i i-1/2,j i1/2,j-1 Uj- 1/2 + U 1l,j-1/2

- (,j+1P i-lj+lP ij 1/2,+1 + V-1/2,) (U ,j+1/2 + U 1,j+1/2

L i,j i-l,j[_ n n (R) _ + n (2,

RA ,j/2 - ,j+1/2 ,j-/2 ,-/2 + R(VR n  
(4-23)

•" i-1/2,j

and

Dn AR D' i - 2) n. n n n n n i+
i,j-1/2 i,j-1/2 8 2i-3/ Pi,j i- ,j  i ,j- I  i- ,j- 1n i-i/2,j +Vi-/2,j- 1

i, + 1/2,j-1

n n + i n _ ( n n n n
Pi,j-1/2 i -,j/2 iP+I-/2) i+ i +1-1 i 1

nU + + Vnj L -

(Vi+1/2,j i+1/2,j-1 U +1,j-1/2+U ,j-1/2

n (n n ni,j Qi,
+ iRU ,j-1/2 ,- ,j-3/2 j i,j+1/2 RN )n nRA (NQn R ,j j1( Re) 

+ (N R e )

i"j-i ,i



(this eq. is continued from previous page)

+ 2R i - V2 n i - 1
n  - V

A 2 - 3 i-1/2,j i-1/2,J-1 \2i - 3/ 1+1/2,j i+1/

3lji n i - U Uni + AR(6 Bvz) (4-24)
2 K z1 A ] (4-24)

2i 3} i+,j-1/2 2i - 3) i-,j-1/2 +j/VZ i,j-1/2

The term which appears in the P Poisson equation is

n 1j ( - n i- 2 n n

1 2 + + N n + B n

n 2 3) iB3/ 2 3j) -3

S1,/2 i N AR 2i - 3 i i ,j -1/2,j

n n Uij+ / A (M n (4-25)S i,j+l i,j ij+/2 NS i,j

The explicit momentum fluxes in equations (4-23) and (4-24) are written using ZIP differ-

encing, which is a conservative method discussed in the LASL papers. It defines the finite dif-

ference momentum flux through a cell wall so that the flux is arithmetically the same whether



viewed from the donor or the recipient cell. ZIP differencing has fewer truncation errors to be

corrected by BVR and VZ.

The Poisson equation for P was solved by point successive over relaxation (SOR) and also

alternating direction implicit methods. These are discussed in detail in Appendix A. The final

form of the P equation is

~+At) 2 N+ 
+n1i'

S(AR)Eu i-1j + RAfi,j+l+ Pi,j51 + n .p L -

i,j 2 CP(t) 2NE

N2 (AR) 2i,j SP

(4-26)

The functional SOR form with relaxation coefficient a is

~Q+ a Q + Q + I  Q+I -Q j Q n  n n+l n )-27)

p..I (4-27
P = (1 - ) + 1, i+l,j' i,j+l' I , $ , i,j i(4-27)

For ADI the equation is made into a pseudo time-dependent equation with variable X as the

pseudo time. Two equations are required to bridge an increment AX.



F26(At)2  2 22TA)NEu i - 2 Q+1/2 Eu 2e(At) NE Q+1/2 2cp(At N Q+1/2+ "- 1 P .
N2 2 2i - 3 i-1,j AX 2 i,j 2 2 i - 3  i+1,jSk S S)

2 2 n+1

and

2 2 () 2  2 2 i +

(N (AR) N'j (AR) ij+l
Sk S) S,

2 2
p(At) 2NEuRA + PQ 2_ PQ - 2Pi? /2 (4-28b)
2 2 1+1 ,j-1 A i, 1,j
L sk(AR)

As with SOR, the ADI method approaches the true P field to a specified accuracy. The super-

script Q refers to the Qth iteration.

The R- and Z- momentum equations yield advanced values for V and U.

n+1 n n. 2t

n n + Bn n+l n+1
+ NE(1 - 9)( -. P + B + p (4-29)

Eu I il (0 j



1Yn n n 2At RN j -1/2 ,j Pi-1, ij-1/2 + NSR AtEu \ i,j-1 i,
jn pn + i n+1

+ R NEu j 1,j i, j + D + (4-30)

The total energy equation is written with almost all advanced time terms.

,E +2A S( - 3) E , + ,j) -1/2,j

- + n+ l ni n + n+l n+1 \

2i -3 . i+l,j i i+l,j i+1/2,j

1 n+RA n+1  E n n+l n+1 n+l En +En Un+1
RA , Ei,j i,j-1/ ij i,+ i i ,+ ,j+/2+P j -1 - 1J12 +

2i i- +1/2,j 2 i - i+, +1/2,j

+ ~ n+1 2) Un+ 1
2RA ij i,j-1+2)Uij-1/2 ij i,ji 31 + i 1,j1

n- n \

S ii , -

(equation (4-31) continued on next page)



Sj + 1 i+1/2 4Vi+/2,j \V+ 3 /2 ,j Fi +1/2,j)

/n+l n+ n+1 n+l 1 ( n+1 n+l 1
+ 2 U i+l,j+/2U i+l,j-1/2 - Ui,+i/2U i,j1/2 + i+,j+1/2 + U ij+/2

121- +\ F1 n n+1
+ U i+1l,j-1/2 + i -1/2) V+1/2,j+l +1/2,j-1 - 3 - +Qil,j vi1/2,j

+ 4V1 + - V1+1 + 2 U i,j+/2 -/2 - iU ,j+I/2U i,j-1/2Si-/m,j +l/2 A i/2,jj+1/2

1 n+ + n+l + U n+ n+1 / n+l _ n+l

+ RAi,j+1/2 + U ,j+1/2 1/2 i-l , -1/ -1 -1/2,j+ - V 12,j 1

At __1 4R1 n  + - 2In
iL A n A L( n i,j+1 + i,j-1 i1,j

(AR~NS£ NRe ,Pr, _.i jn
+1 U-1/2,j+ 1 + 2 (vn+ / n+l .n+l _ n+V

+2 +/ U 1+/ - 11/2,j+ i /2 i+1 /2,ji /2,j

nn+1 Vn+l Un+l n+1 n )Un

i+,j-/2 ,j-/2 \ i+/ 2 ,j+l i+3/2,j+l) + n+,- I U

(equation (4-31) continued on next page)



+l vn+ 1 n+1 n+l .+l nn+1
2A i+ 2,j i-1/2,j i+1/2,j-1 i-1/2,j- i,J-1/2  ij+21/2 ,j-

/2j 1-1) (j-12

(4-31)

The internal energy is simply

SEn+ l n+ 1 n+l Vn+l 2 + (n+1+ (4-32)
i,j =i,j i+1/2,j + i-1/2j i,j+ 1/2 + (4-32)

The above equations (4-22) to (4-32) plus equation (4-15) are sufficient for single fluid

problems. If species diffusion and reaction are required, the conservation of component mass

equation must be included. This is finite differenced as,

n+l n
PK i i, - (PK)i, i . n+l n+1 n+l

NS£ At 3P K ) i j + (PK) i,j Vi+1/2,j

__i-23 n+l n+l n+ 1 n+1 n+ n+li3 Kij + Ki1, )i-/2,j RA  K) i,j+ +K)i,j ,j+/2

1 n+ n+ 1 +1 n n+l n+n

RAPK)i,ij + K Ki,j-1 -1/2

(equation (4-33) continued on next page)

i4



P)-l + (PK + (PK) -.l 1/2l,j
LAR I\23LK+, PK)i 1+1/, 3)ij+ n1

1 ~~) _+] 1 n ,n+l
+.~~RALPK)~~j+1 + (PK),jU~ 1 2  R, [PK). .j + (PK'ij.j~../

+~~~~~ ~~~~ C~~ n1( +) (c 
i ~~ LRK+~ + MKlExo+, -(

LIN 2 j2 M+,+M,)i~+l,j + N1~,j) xN~~~+ Nc

-- i 3 (MRRK) I + -e s n+ ( ~ N

+ ~-R~[(~~+1 + c) ~ M ~On,~ + (MR(X LXKl j+1 (XK) ,

+ I+ + l~Nj kj)l + (Re) Ls) +1+(~),

.IR2V1,i~~~ ~ (N2,-1  
N.SRKc) + (NKSC)LK', - (

~ +M~7..l)~N~)'7 + Re) Re~1L s)n,j + 9 j1
i~l~j 4( M- F)3

2y ,)F 13-1  M K) i iij j-(

2i ) n- N~ )n + (R, ) N .)n (NC)
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The binary form is used in this study. Only the molecular diffusion

term differs in the multicomponent version, and its form is easily seen

from equation (4-33). The convective fluxes are written both implicitly

and explicitly with a proportioning coefficient p. As with 0 and 9,

0 .< , . 1. The diffusion term is written explicitly, and the reaction

term implicitly. This choice of implicit vs. explicit finite differ-

encing evolved from numerical experimentation performed herein.

The implicit nature of the equations requires an implicit scheme,

and the ADI method is used. The equation is solved in a two step fash-

ion, the first step presuming diffusion without chemical reaction and

the second step presuming reaction only. To assure convergence, the

time step At is subdivided into smaller increments, At , for the dif-

fusion calculation. The reaction step subdivides the increment At'

into even smaller time steps At". This process is necessary because

the characteristic time of reaction kinetics is often considerably

shorter than the characteristic time of fluid motion. A suitable At

for fluid flow may be many times too large for chemical reaction, re-

sulting in reaction overshoot, errors, and usually numerical instabil-

ity. Equation (4-33) is written over the time increment At, but it is

used in the computer program over the smaller increment At'. Thus the

superscript notation shown is not exactly correct for an increment

At'. In practice the explicit terms are calculated, then the diffusion

without reaction is calculated over At' for each specie. Next the

reaction is presumed to take place without diffusion in a series of

time steps At" = At'Y. This reaction step is done Y times, each



step using the results of the previous reaction.- Then diffusion is -

again calculated over the next At' using specie densities computed

from the last At' in the implicit portion of the equation. The proc-

ess is repeated until the true time step At is bridged.

The ADI formulation used in the diffusion calculation across in-

crement At' is

i - 2 _n+l (K)n+1/2 + - I)n+1 (i- 2 n+l

2i - 3) i-1/2,j2i i+1/2,j 2i 3) i-/2,j

2Ns AR n+1/2  i - t1 i u+n1/2
+ tij (pK) -+ 3 + / K

At i J i -in + (SK), (4-34a)
i - R- 1 /]PK) (PK -1 + [-(Pii i,j (K1 ( tli,j

F Un+l n+1 Fn+l _ n+l 4NsR,j +i1,j1/2 L K i,j-l/2 i, j+1/2  AOR j ij(K

r__ .n+l • --], )n+l -. n+l - n

"Fn+l R+4N AR

ij-1/2 i,j+l/2 A+ tIi 0K)i,j

+ Ui'j+1/2,0K ij+I2 (K)+/2ij (4-34b)

The explicit terms in equation (4-33), including the truncation error

correction MK are multiplied by AR/P and collected under the term

SK in equation (4-34a). The chemical reaction equation is simply
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/YA)n+(y-1)/Y B n+(y-1)/Y
n+y/Y n+(y-1)/Y BKi,j z,3

(PK)i,j =(OK) + At"k PK (4-35)

As mentioned before, this is performed Y times in each increment At'.

The full set of finite difference equations for compressible flows

with specie diffusion and chemical reaction has been presented. The

next task is to examine the application of boundary conditions to the

ICE computational scheme.

D. Boundary Conditions

A typical cell and the computational mesh was shown in figures 1

and 2. The ICE system is especially convenient in applying boundary

conditions. In all problems considered here, boundaries are aligned

with cell walls. That is, there are no partial cells with boundaries

passing through the cell interior. As mentioned earlier, the grid has

four types of boundaries: centerline, wall, input, and output. There

are also three types of boundary conditions. They are based on assump-

tions concerning the boundary value of a variable itself, or on its

first or second spatial derivatives.

The centerline boundary is symmetrical, presuming no radial flux

is possible across the centerline of a tube with flow independent of

angular position. Assume the cell i,j is within the computational

grid and the wall at i- 1/2 lies on the centerline. Then

Vi/2,j = 0 (4-36)

All other variables, such as U, are symmetrical.

Ui-,j/2 = U ,j_/2 (4-37)
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Nonzero variables are not defined on the centerline i - 1/2, making it

unnecessary to write particular equations obtained by evaluating limits

as 1/R - 0.

Wall boundary conditions are usually straightforward A nc-slip

wall means the axial velocity is zero at the wall. But U is not de-

fined at the wall. Therefore, an average must be formed at the wall

which is zero, and this prescribes the value of U in the artificial

row of cells which impresses boundary conditions. If the cell i,j

has its wall at i + 1/2 aligned on the tube wall,

Ui+l,j-1/2 = - Ui,j-1/2 (4-38)

If the wall is full slip, the axial velocity radial gradient is zero,

and

Ui+l,j-1/2 = Ui,j-1/2 (4-39)

For an impermeable wall,

Vi+/2,j = 0 (4-40)

If the wall is reflective,

Pi = P (4-41)

Vi+3/2,j = i-1/2,j (4-42)

Other assumptions may be made to evaluate Vi+3/2, j. These are

based on the velocity divergence, Qij which is presumed to be reflec-

tive if the density is reflective. Then

Qi+,j = i,j (4-43)

This can be solved for Vi+32,j if the wall permeability and slip is
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specified. This condition also removes a gradient term at the wall in

the energy equation. For incompressible flows all Q's are zero. If

the wall is insulated,

Ei+l, j = Ej (4-44)

i+, = (4-45)

An especially superior boundary condition can be found on P and

P at the wall if all velocities are known. If the wall is impermeable,

@V/3t is zero, and this may be used with the finite difference form of

the radial momentum equation to give P. and P. The coefficient Cp is

arbitrary and may be set to either 1 and 0, leading to

J = P . i+B. 2,j/NEu (4-46)

Pi+l, j= P ,+ B i /NEu (4-47)i+1,* i93 i+1/2,j Eu

Care must be taken that the equation of state is satisfied at the wall.

Thus if P and p are specified, I is also known.

The upstream boundary condition is usually a specified input.

Again presume the cell i,.j lies in the computational grid with the

cell wall at j - 1/2 coincident with the input boundary. For all

problems run herein the radial velocity is assumed zero. Since V is

not defined on the input boundary, an average is formed of straddling

axial values, and

Vi,j-1/2 Vi,j+1/2 (4-48)

If P and I are specified, p is known, Uij_2 is calculated, and

U is found by an assumption on Q at the input. Usually this
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is not critical. The input total energy may be calculated after

Ui,j-I/2 is known. Conversely, if the input velocity is prescribed,

the axial momentum equation will specify the pressure gradient at the

input and, for arbitrary p,

Pi,j-l i,j - Di,j-1/2(RANEu) (4-49)

A similar equation is written for P. .,j Then p may be found from

the equation of state.

The least resolved boundary conditions are at the output. Often

the pressure is known or may be calculated as a function of velocity,

but other variables are not known. LASL often uses the concept of a

continuative output. This is a boundary condition which does not prop-

agate signals far upstream, since all gradients are set equal to zero.

The problem may be distorted in the region near the continuative output

boundary, Paris (41) presumes the output boundary is so far downstream

that at steady state a known flow, such as parabolic Poisuille flow,

exists at the output. The output boundary is moved farther downstream

in a series of numerical experiments until no further change occurs in

the solution. But several problems in the present study have outlet

boundaries that are not far downstream. It is thus not possible to use

the concepts of Paris in these cases.

The continuative output is desirable for many of the prescribed

input flows, but the possible distortion near the output boundary is

unwanted. It is found that a reasonable output flow results when the

pressure is fixed and the remaining variables are assumed to have con-

stant first derivatives at, or near the output. Thus the second de-

rivatives are zero.
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U - 2U + U.. i,j+3/2 i,j+1/2 i,j1-1/2 = 0 (4-50)
(AZ)

2

leading to

Ui,j+3/2 = 2Ui,j+1/2 - Ui,j-1/2 (4-51)

and

P += 2pij- Pi,j- (4-52)

and so forth.

Note that the (4-52) condition presumes the second derivative is

zero at the center of the last cell upstream of the output boundary,

rather than at the boundary itself. If a zero second derivative of any

cell-centered variable is applied at the output boundary j + 1/2 to

find a value at j + 1, variables at both j + 2 and j + 1 arise.

Thus the number of unknown values is not reduced. The definition

(4-52) applied to all cell center variables uses information at two up-

stream locations and produces a smooth output. Heuristic reasoning

suggests that if a zero axial second derivative is applied a half cell

upstream of the true output boundary, it is also effectively applicable

at the boundary. Conversely, it must be recognized that a slight dis-

tortion may be introduced upstream of the output boundary.

The boundary conditions on specie densities offer no new problems.

Symmetry still applies at the tube centerline, the wall radial gradient

is zero to prevent mass transfer through the impermeable wall, the in-

put is specified, and the output is continuous in the sense that the

second axial derivative of the densities is assumed zero near the out-

put boundary. It should be noted that for some variables a reverse
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flow from outside of the tube into the downstream end of the tube would

cause no real problem in the computation. But for specie densities

such a flow reversal would be disasterous since the degree of mixing

and reaction outside of the tube is entirely unknown.

This concludes the general description of boundary conditions.

The conditions used for each problem will be discussed in the results

section. The same finite-differenced conservation equations apply over

the interior cells for all problems. A specific problem can be calcu-

lated only by impressing suitable boundary conditions. If the bound-

ary conditions are unrealistic, so is the resulting problem. Thus, the

application of boundary conditions must be done with extreme care.

E. Computer Solution of the Equations

An examination of the finite difference equations show a large

number of implicit terms (assuming p and 0 $ 0). This favors sta-

bility and gives confidence in the time dependent aspects of the prob-

lem. It also can increase certain truncation errors and can lead to

long numerical iterations. The implicit nature of the equations is

needed for fluid flows at low speeds. This is because slow flows be-

come incompressible in behavior and require knowledge of the entire

pressure field. This knowledge is propagated through the grid by the

implicit solution process.

The basic ICE method requires iteration only for P. All other

variables may be calculated in an explicit manner. If the expanded

definition of the hybrid function as presented by this author is used,

In+lan iteration on I is required. Since the inner P iteration is
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nested within the outer In+l  iteration, the expanded algorithm should

be avoided if possible. Fortunately, this usually can be done. The

iteration required by the implicit convective fluxes in the species

equation is not nested with the other two iterations, and it does not

incur a severe computer time penalty.

An outline of the algorithm is shown in figure 3. After an initi-

alization sequence the main time loop is entered. Explicit terms in-

cluding all truncation corrections and Q, B, D, and G are calcu-

n+ l  n+1
lated. If the outer iteration on I is required, I n+ 1 is initi-

ally set equal to In . The P iteration commences using either equa-

tions (4-27) or (4-28a,b). Upon convergence to a suitably small

change, the advanced density pn+1 is computed from equation (4-18).

Next Vn + 1 and Un+ 1 may be calculated using equations (4-29) and

(4-30). At this point the continuity equation is checked to assure

-3
that it is satisfied to at least 3.5x10 - 3 , a number which LASL found

a minimal for satisfactory accuracy and stability (55). If this test

is exceeded for any cell, the program performs more P iterations and

n+l n+
recalculates p . When the continuity test is satisfied, E and

n+l
In+ are calculated using equations (4-31) and (4-32). If an outer

n+l
iteration is required on I , the program may return to the P iter-

n+1
ation with the improved value of In , or the program flow may pro-

ceed. If the fluid is designated as incompressible, the speed of sound

is set to a large value (10 16) and the energy calculation is bypassed.

If the fluid is multicomponent, the species equation is solved by

computing the explicit term SK, and iterating on (pK)n+l with a

number of reaction steps after each iteration. After convergence the
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advanced pressure Pn+l is computed from the equation of state (4-15)

and the time cycle is completed.

Further details may be found in Appendices A, B, and C. Appen-

dix A discusses the SOR and ADI schemes for solving the P equation,

Appendix B proposes a sequence for solving the reaction equations with

strong temperature effects, and Appendix C documents the current numer-

ical program which is still in the research phase.

This concludes the development of the finite difference equation

and the outline of their solution. The next chapter discusses stabil-

ity analyses and the truncation error corrections, B,



Chapter 5

STABILITY AND TRUNCATION ERROR ANALYSIS

The problem of numerical stability was briefly discussed in the

introduction. This chapter examines the matter of stability in more

detail and presents several methods which can predict stable bounds on

time and space increment sizes. Also, the Courant-Friedricks-Lewy

necessary condition for stability has been adequately covered in the

introduction. The approach of Cheng mentioned in the introduction is

similar to that of Hirt, but Hirt's analysis is preferred.

A simple equation containing both a convection and a diffusion

term is used to illustrate the methods. The analysis by Hirt is ap-

plied in more detail to simple conservation equations. It is used in

this thesis with the two dimensional ICE equations to generate terms

which correct for truncation errors that produce instability and loss

of accuracy. The corrections are presented and finite differenced.

Besides the original papers, the excellent presentation in the text

by Roache (45) is used heavily in this chapter.

A. Basic Concepts

It is more correct to say that the numerical fluid dynamicist is

faced with the problem of instability rather than the problem of sta-

bility. A computation may be stable and incorrect due to unwanted

61
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numerical diffusion, but an unstable computation is usually cata-

strophic. Stability analyses are difficult. Most equations of inter-

est are nonlinear, whereas most analyses are linear, and their appli-

cation to multidimensional equations which are not simple in form in-

volves ponderous algebra. But linear analyses do provide some insight

into the behavior of the equations, so such analyses are worthwhile in

assisting the fluid dynamicist toward producing a numerical solution

which approaches the physics of the flows.

Two types of numerical instability are found in computations:

static and dynamic. Consider a variable W which is distributed over

a coordinate Z at a time t. Presume that this distribution repre-

sents a steady state solution of W(Z,t). Now perturb the solution in

a point to point manner along Z such that the perturbation oscil-

lates, producing a saw-tooth error curve over Z. Three types of dyn-

amic behavior can occur at later time steps. The perturbations can

die out, then the finite-difference solution is stable. The perturba-

tions can grow monotonically, the deflection increasing at each time

step so that a.positive perturbation remains positive and grows larger,

This is static instability. The perturbations can not only grow but

also change sign, flip-flopping around the true steady state solution.

This is defined as dynamic instability. One instance of dynamic in-

stability occurs when a normally stable explicit scheme is run at too

large a time step, the large At causing drastic overshoot on all de-

flections. Both static and dynamic instabilities were encountered in

the present study.
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The analyses of the next section will be illustrated using the fol-

lowing simple partial differential equation in one spatial dimension

with constant coefficients, U and v.

aW aW 82W
-= -U + v (5-1)

This equation has a convective and diffusive term on the right hand side

and thus simulates the form of the conservation equations. The finite

difference form of (5-1) will be taken as

n+l Wn n n n - W nW - W. W W - 2Wn + W
= U -1 + j (5-2)At 2AZ (AZ) 2

The time difference is forward, the others are centered. The convecting

velocity U is constant in time and space.

B, Linear Stability Analyses

a) Method of Positive Coefficients

This is a simple criteria where the equation is rearranged and the

coefficients of each W term examined. If all coefficients are posi-

tive, the equation is stable, according to Forsythe and Wasow (18).

Rearranging .(5-2) gives

[Wn+l At - U n + _

1]W 
+  +  2v + +

(LZ 21 j i L

,(5-3)

Note the appearance of a Courant number, UAt/AZ, in two of th'e coeffi-

cients. The conditions which lead to stability are found from the coef-

ficients in the brackets.. For each W these are
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W : -U< 2 (5-4)j+1- AZ
2Wn  A t <S (AZ) (5-5)

Wt 2 (5-5)
_ 29

wU. A2 (5-6)j-1u AZ

An equivalent equation to (5-4) and (5-6) is

U2 < 4v2 (5-7)
(Az)

combining this with (5-5) leads to

2v
At < 2 (5-8)

- 2U2

Furthermore, if (5-4) is rearranged to give

AZ 1
2 <  (5-9)2v U

and this is used in (5-5), the result is

At
U - < 1. (5-10)
AZ

which is the Courant condition. Equations (5-5) and (5-8) describe the

restrictions on At, while (5-4) and (5-6) show the limits of IUI as

a function of v and AZ, independent of At. A large diffusion coef-

ficient or small mesh is necessary to permit a usable velocity range.

A computation for an inviscid fluid (v = 0) would be unstable. This

has been verified by Cheng (11) and others for this finite difference

scheme.

b) Method of Discrete Perturbation

This method provides some insight to stability phenomena by pre-

suming the solution is at steady state, then locally imposing a
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perturbation of W at a point and examining the requirements which

prevent the perturbed value, W', from becoming unbounded. If W' is

applied at point (j), and the finite difference equation is written at

point (j + 1) to generate information in the convection term,

n+ n (Wn W- 2W n + + W
wj+1 = + 2 j++2 j 2..

(AZ)At 2aZ (az) 2

(5-11)

To isolate the behavior of the perturbation, assume the steady state

solution gives Wn = 0 for all jo Then

Wn+l
+1 W ' W'

A_ = U +  (5-12)
At 2AZ 2

For stability to be assured, the response of the system to the normal-

ized perturbation must be

n+l

W < 1 (5-13)
W

This means

- 1 < U + At 1 (5-14)
S2AZ 2

(AZ)

The-right inequality specifies static instability bounds.

At AZ (5-15)
-U v-+-

2 'AZ

Positive At' occurs if U > - 2v/AZ. This is the constraint (5-6)

which arose in the positive coefficient analysis. The left inequality

in (5-14) specifies dynamic instability bounds, and it is also satisfied

by (5-6).
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If the entire analysis is repeated at (j - 1), the restrictions

which arise are

St A (5-16)
2-aZ 2

or

At < (5-17)
U v- --- f
2 AZ

This is satisfactory if U < 2v/AZ, which is relation (5-4). Thus the

analysis gives the same restrictions on IUI as the positive coefficient

analysis.

Equation (5-15) may be examined under the restriction I.UI 2v/AZ

It is seen that the minimum upper limit .on At occurs. when U = 2v/AZ,

and the restriction (5-5) is the result. Hence the discrete perturba-

tion method gives identical results as the positive coefficient method.

Equation (5-5) can also be produced by the discrete perturbation method

using two other means; a.zero overshoot assumption and an analysis of

perturbations that are oscillatory along Z rather than located at one

.point. *These alternate approaches may be found inRoache (45) or the

original papers.

c) Karplus' Method of Electric Circui.t Stability.

A method that is simple to use is the electric.circuit analog of

Karplus (34). He noted-that the current distribution of a network of

electrical resistors arranged in a .regular pattern could be written as

a finite difference equation. Conversely, the finite difference equa-

tion could be presumed to have an electric circuit analog. Then
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concepts of circuit theory that deal with electrical instability can be

applied to finite difference equation instability.

Kirchoff's voltage law expresses the current of loop n, j in

terms of currents in adjacent loops.

R 1- i~ + R2  +1l - i) + R3 (1- i) + R4 (j1 - i) al(.n n .n n+l inn) + R3n-_ 1  =O
R j+ I  j) + R 2  + R 

+R
(5-18)

The notation here is conventional electric theory notation, R being re-

sistance and i being current (not to be confused with the index nota-

tion of the fluid dynamic equations). The resistance network is stable

if a current in a loop dies out after excitation is removed.

Application to finite difference equations is simple. Arrange the

equations in the form of (5-15), where j is a bounded space coordin-

ate. -If all coefficients (corresponding to R1, R2, etc.) are positive,

the equation is stable. If some coefficients are negative, the equa-

tion is stable if the algebraic sum of all the coefficients is negative.

Rearranging equation (5-2) and adding and subtracting the term W
J

leads to

(2v - UAZ)(( - +(2+UAZ)W W (2(AZ) 2 n+l nW = 0
+\-l At ) (

(5-19)

The first and second coefficients are positive only in the range pro-

scribed by inequalities (5-4) and (5-6). However, the third coefficient

is always negative. Invoking Karplus' second rule for stability,

(2v - UAZ) + (2v + UAZ) 2(AZ) < 0 (5-20)At
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which leads to (5-5). Thus the method of Karplus gives identical re-

sults to the other methods presented thus far.

d) Method of Von Neumann

This method was mentioned in the introduction and reference (40)

was cited. It is the most widely used and has been expanded and modi-

fied by many researchers. The method presumes that the solution to

the linear partial differential equation is written as an infinite

Fourier expansion. The growth or decay of a typical component is

studied to determine stability bounds.

Again start with equation (5-2). The Fourier component is

Wn = Se ikjA= Sneilt (5-21)

where the wave number kZ has been related to a phase angle T. The

quantity i is the square root of minus one. Substituting this into

equation (5-2) gives

n+l ijr = n ijTr UAt (sn i(j+l)T n nei(j-l)T)S e = Se 2AZ e -

+ At (snei( j +1)T 2 snijT + shei(j -l)T) (5-22)

Some manipulation and trignometric substitution gives

n+l At n
Sn +  - 2 ( - cos ) -iU At sin Sn =HS (5-23)

(AZ)2  AZ

H is a complex amplification factor whose modulus IHI must be <1 for

stability. If this restriction is applied, conditions (5-4) and (5-6)
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again result. Examination of (5-23) indicates that (5-5) applies, and

also that U < 1, which is the Courant condition.AZ

As the problem dimensionality and the number of time level in-

creases, the mathematics becomes more complex. The amplification fac-

tor H is then a matrix whose eigenvalues must be <1 if stability

is to be possible. Burstein (9) illustrates the problem for a realis-

tic set of unsteady equations in two coordinates.

e) Method of Hirt

Hirt (29) has provided a heuristic approach for analyzing sta-

bility. The Taylor series for terms in the finite difference equa-

tion (5-2) are written. For example,

n 22n

W+1 = W + At + (At)2 W + [(At)3] (5-24)
j a 2 2

n  2
Wn = W .+ AZ j + Z a (Z I + o[(AZ) 3] (5-25)

n n - AZ (AZ) 2 aw + O[(AZ) 3 ] (5-26)
j-1  j a 2 2

The time difference in (5-2) is contained in (5-24), the convection dif-

ference is gotten by (5-25) minus (5-26), and the diffusive second dif-

ference by (5-25) plus (5-26).

If these series are substituted into (5-2) and indices are dropped,

the result is
__ Ata 2  w 2W

- ~ At 2W + 0[(At)21= -U v - + O[(AZ) 3 ] (5-27)
at 2 2  Za 2at a
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Omitting the higher order terms and rearranging gives

(At) D2 2W 1 W U aw (5-28)

t 2  2  v t v (5-28)

This is a hyperbolic equation with characteristics +IEt-/2v which mark

off a domain of dependence as discussed in the introduction. 
The dif-

ference equation also has a domain of dependence since data 
W. at a

point (j) is propagated over the time increment At to the neighboring

spatial point (j ± 1). Thus the domain of dependence of the difference

equation is delineated by lines of slope ±At/AZ. This domain of de-

pendence must contain that of the partial differential equation accord-

ing to Courant, Friedricks, and Lewy as discussed in the introduction

of this thesis. Then

At a (5-29)
AZ -- 2v

which is the same as restriction (5-5).

Another condition of stability is found by differentiating the ori-

ginal partial differential equation with respect to time and reversing

the order of differentiation.

D (.) 2 -W U E v 2 a 2( (5-30)
at / 2 Z \Dt 2 at)

Now the original equation is substituted into the time differentials on

the right hand side, and the resulting spatial differentials are ex-

panded.

82W 2 2W 3W 2 8 W
SU W 2Uv + 2 (5-31)

t2  Z2  Z3  Z4
This is substituted in (5-28), and the third and fourth derivative

This is substituted in (5-28), and the third and fourth derivatives
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dropped because (1) they are usually small, and (2) the second spatial

derivative is the one associated with diffusive damping (or driving).

Rearrangement of the resulting equation gives

aW UW 2 a 322 - U - U (5-32)
Dt OZ 2 3 2

A positive diffusion coefficient smears a perturbation in W. If the

diffusion coefficient is negative (physically impossible but not math-

ematically impossible), the perturbation would concentrate and grow.

Thus for stability to be assured,

v - U 2 - 0 (5-33a)

or

At < 2v (5-33b)-U2
U

This result is the same as (5-8).

Although constraints (5-4), (5-5), and (5-6) may be combined to

give (5-33b), the converse action may not be taken. There is no way to

extract (5-4) and (5-6) from (5-5) and (5-33b), unless the Courant con-

dition (5-10) is used. The first restriction on At also used the

"domain of dependence" concept.

f) Application of the Various Methods

As the preceding developments showed, all methods gave the same

results except that Hirt's analysis did not yield restrictions on lUI

without assistance from the Courant condition. The example chosen to

illustrate the methods is simple. It can not be concluded that all the

methods would give identical results for a complicated.equation.
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The method of positive coefficients is simple to use but can po-

tentially omit some restrictions. The perturbation method becomes

quite ponderous with two dimensional equations. The electrical circuit

analog by Karplus is relatively easy to use. Roache mentions an ambi-

guity in the method but does not explain what this might be. Ghia,

Torda, and Lavan (22) used both the Karplus and Von Neumann analyses to

determine the stability limits of equations describing steady coaxial

flows. The results were identical and the Karplus method was claimed

easier to use.

The method of Von Neumann is probably the most widely used because

it is well grounded mathematically and conceptually clear. However,

finding the eigenvalues of the amplification-factor can involve exten-

sive computation. It is also a linear analysis and strictly applicable

to Cartesian coordinate systems.

Hirt's analysis of truncation errors becomes ponderous with com-

plex equations. It has predicted regions of instability with success.

More important, it suggests a means for removing some of them, which is

shown later.

Application of these methods to non-linear equations is done by

assuming that the equations are locally linear over small time-space

increments. Then stability becomes a point-to-point matter. Mathemat-

ical bases for non-linear analyses are lacking. Of the listed methods,

those of Karplus and Hirt have the least restrictions, hence the poten-

tially widest applicability. It can be expected that these two methods

will be used more frequently in the future.
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C. The Use of Hirt's Truncation Error Analysis

The words "finite difference approximations" describe the non-

linear algebraic equations which are solved on the computer. These

equations approximate the partial differential equations which de-

scribe the fluid flows. The deviations are due to the casting of a

finite sized mesh over the continuum of interest and the replacement

of equations valid at a point with equations applied over discrete

intervals. The approach of the discretized solution to the true point

solution as the interval approaches zero is the problem of convergence.

Concern about this problem often overrides another consideration: the

solution obtained is further removed from the desired solution by

truncating the infinite Taylor series which are used to construct the

finite differences. The truncations of the series are necessary for

practical application, but they introduce errors of accuracy which may

stabilize or destabilize the solution. Hirt's stability analysis quan-

tifies the truncation errors.

An examination of equation (5-32) illustrates the result of the

2 At 2w
truncation analysis. An additional term -U 2 2 plus higher order

2 DZ2

differentials not shown are present in addition to the original partial

differential equation. Furthermore, the error is always negative in

sign, hence destabilizing. In fact, although attempting a numerical

solution with At . 2v/U 2 as specified by (5-33b) may give a stable

solution, the second order error is present for any finite At.

Harlow and Amsden (25) suggest that the error may be removed by

including diffusion terms identical in magnitude to the errors but of

opposite sign in the finite difference equations. For example, based
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on the result (5-32), the coefficient v in the finite difference

equation (5-2) should be replaced by 2 + U2  ), and the error is

2
automatically removed. Note that the error contains U which was

held constant for this example. If U2 varied through time and space,

the correction must be calculated at each time level and uniquely at

each grid point. But (25) first introduces these as partial deriva-

tives in the original differential equations. It seems more appro-

priate to start with the original equations and introduce the correc-

tions after the errors have formed in series truncation. This also

avoids the insertion of corrections on the corrections.

The application of Hirt's truncation error analysis to the con-

tinuum equations is illustrated by an example of the one dimensional

unsteady equations for mass and mementum.

= (pU) 1 - (pU 2 + P +q)
at az at az

where q is an artificial dissipation as described in equation (2-3).

Only the stability of the finite differenced mass equation is examined.

This is forward differenced in time and uses a centered space differ-

ence first explicitly, then implicitly.

The explicit form is

n+l n (Pn P n
p - p (pU) j+l (pU)_ 1

At 2AZ(5-36)

The left side is in a rearranged Taylor series

n+l n
Pj - Pj p 2 2  3

= At L +(5-37)
At at 2- 2 6 3

Tt at

The right side is
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I ) 
- (pU)1j+i- (U+ (AZ) 2 a(pU) + (5-38)
2AZ 3Z 6 Z3

All the above differentials are evaluated at n and j. Substituting

these two equations into (5-34) and discarding terms higher than

O[At, (AZ)2I,

2 2 3
ap + At p (pU) (AZ) a (pU) (5-39)
at 2 2 az 6 3

The second derivative with respect to time is found by substituting the

mass and momentum equations

a p a a(pU) a
/_ _(pU) _ (pU)(5-40)

2 at az atat

Then the momentum equation is inserted in the brackets after using

3P= P -ap - ap. (5-41)
aZ ap az aZ

where A is the square of the isothermal speed of sound. Performing

the spatial differentiation and retaining only the terms with the dif-

fusion form, the result is

2 2
2 P (U2 + A) 2 P  

(5-42)

at 2Z

Likewise

u3 2
3 (5-43)3 aZ 2

The final result is

ap (pU) + - (U + A) 2 a (544)
at az 2 2 aZ 2

DZ
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An examination of the diffusive error shows that the first term is

always negative, its magnitude increasing with At. The second term

depends on the sign of lU/aZ, and a flow accelerating down a tube is

destabilizing. The general conclusion is that the explicit finite dif-

ferencing should destabilize as At increases, and this agrees with

experience.

The implicit difference form of the mass equation is

n+l n n+l n+
P - (pU)+ - (pU)j_

At- 2AZ (5-45)
At 2AZ

The right difference is a double expansion

n+l n+l
(pU) - (pU) 2 3 2

U)j+-= (pU) + (AZ)2  (pU) t + At + .. (5-46)
2AZ aZ 6 Z3 atZ

and

2 2 2
a (pU)- a (U2 + A) (5-47)
DtaZ t2  Z2

Except for this term, the rest of the analysis. is identical to that for

the explicit formulation. The result is

_p _ 8(pU) + At 2 2 1 2 pp U) + -t (U + A) (AZ)2 U P (5-48)
t Z 2 2 aZ 2

pZ

The implicit and explicit truncation errors are identical except for the

sign on the first term. However, this term is now always positive and

thus stable for all values of At. The inherent stability of implicit

methods is well known. Although the truncation errors are stabilizers,

it would be advantageous to remove them (provided stability is main-

tained) because they are errors.
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The nlq!olis example shows the power of Hirt's method in identify-

ing diff(uJ~y n~ncation errors. Since the errors contain velocities,

densities~ -I . ltheir spatial gradients, the physical problem 
may be ex-

amined f _AI0ons of flow that might cause instabilities. 
Hirt ex-

amined h:gi rder space differentials to predict unstable 
regions in

shock pro o~~: O nn problems. The predictions were verified numerically.

An analysi~d j MAC stability was also successfully applied 
to a problem

describii f pw through a sluice gate in a dam. Thus Hirt's theory is

substant:iat d in numerical tests.

D. The 76 ~fTlpensional ICE Truncation Errors

The ed6 ~ppts discussed above were applied to the ICE mass 
and mom-

entum eqUdd ns  and also to the species equations. The energy equa-

tion was aorped because, with mass and momentum established, 
there was

no indicatl o' f stability problems in energy until the last few 
runs

of the stdP

Visc~ e~Id diffusion terms are of higher order and are not ana-

lyzed. e,,#less, the algebra is mountainous. The results for the

truncatioul BArsr analysis are listed below. The original partial dif-

ferential qH pion (OPDE) is on the left side of the equation.

- 1) + NEA)R2 aAV (R ap

+ (2 - 1) (U2 + NEuA) At - 2 (5-49)
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Radial Momentum OPDE = 2NL 2 - 1)NEuA - 3pV
St Eu

2 R +V 2 pU-

(AR) 2 9 Y At 2 (
8 L R aRt +R2  L2NSZ 4L D:+ Iraz2

(5-50)

_-_2 I 2

Axial Momentum OPDE = t S o2 - 1)N pA -3p 8 U - Z2

2At 2 (R) 2  2p + V pV T 2U
- 2N4 IVaR DR + RI] 2

Species Mass OPDE + (4 R 2 + Zl 2[5R DR DZ
:(5-52)

Equations (5-50) and (5-51) omit the stabilizing correction which re-

n+l
sults from outer iteration on In+. The treatment of corrections for

time derivatives in the species equation is uncertain and numerical ex-

perimentation usually gave instability. Thus equation (5-52) includes

only spatial truncation errors.

Note that a term in the mass equation has a coefficient (20 - 1)

which determines the sign of the term. It is stabilizing for 8 > .5

(implicit), destabilizing for e > .5 (explicit), and it vanishes at

S= .5 (time-centered). The coefficient cp performs a similar func-

tion in the momentum error equations.

There is no contradiction that when 0 and (p = 1 and A -+

for incompressible flows, an infinite diffusion error takes place.

Instead this predicts the infinite propagation of pulses throughout

the fluid, which is a basic assumption of the incompressible equations.



The truncation errors in mass and momentum equations are removed to a specified degree by add-

ing a corrector B as mentioned previously. The corrector B is the finite difference analog of

the negative of all truncation errors except those with coefficients that vanish with time-

centering. The B corrections follow in finite difference form and include the spatial second

derivatives to be consistent with the equations of Chapter 4. The cell aspect ratio removes AZ,

and coefficients are extracted where possible

(M)i,j 2AR i+/2,j -1/ 2 ,j i i+l,j + 2i - ,j -

+ -n - ' + n - 2pn (5-53)
2 RA i,j+1/2 ij-1/2 i,j+l +  ij-1 i,3

( n 1 F4 n + n 3 - n n
(VR) i-1/2,j AR S ,j i-l,j i-/2,j 16(i - 2) j +Pi-l,j

S n Pn n n n+ - 2V 1 /2]
8 Pi,j i-1,j i-/2,j i+1/2,j 1-3/2,j i-1/2,

AtR 2
A n n Un Un +n + Un

64tRNS j i-1,j 1 ,j-1/2 +  i-l,j+1/2 -,j-1/

(this equation (5-54) continued on next page)



1 . n n + + n n n
64 i,j+1/2 +  j-1/2+ Ui-1 ,j+1/2 1-1,j-/ ij+1 i-1,j+1 i,j-1 i-1,j-1

+ + -p1 ,)(Uj,j+ 1/ 2 + -1,j+/2 , U1 1/2 RA -1/ 2 ,j+l-8 n ii-li, I -i/2

i-1/2,j-1 2Vi-1/2, (5-54)

n 1  A n n 2

Bv2i,j+1/2 46RN i9j I j 1 I,j-1/2

,j Pi,j- RAUi,j- 1/2 ij+1/2 + Un,j-3/2 .- 2Ui,j-1/n n Ln 2Un

8 SL4A VPi'J Pij-1/ +1/2,j i-1/2,j V +/2,j- 1 -/2,j-

S/2,,j j i+/2,j- -/2,j- + 1,j +,j- - ,j - ,j-

n.o n v n +n 2

+ i ,j N ,j- +i1/2,j +/2,j-/2,j 1/2,j-1

(this equation (5-55) continued on next page)

00



n n n+ Vn n Vn

+ 16(2i - 3) ,j i ,j- +1 /2,j + V+1/2 , j -1 i-1/2,j + i-1/2,j-1

Un +Un -2U n  (5-55)
i+l,j-1/2 i-l,j-1/2 i,j-1/2

ij -4AR i+1/2,j - 1/2,j + (2il- 3) i+1/2,j - 1 / 2 ,j K+l,j

+ (K)n j - 2(pK) n  + RUi,j+1/2 - U 1  K j+,j - 2(pK)

(5-56)

Since the error analysis is by nature approximate and the correctors 
must themselves be fin-

ite differenced, the use of the full correctors can potentially remove enough diffusion to desta-

bilize the calculation. To avoid this problem, the collections of terms in the brackets 
{ } have

coefficients read as input into the computer program. The coefficients can be used in the normal

sense, zero to full correction requiring coefficients in 
the range zero to one.- But a number

greater than 1.0 can be used. Then the amount greater than 1.0 is applied to the absolute value

of the terms in the respective brackets { }. This provides a small amount of positive diffusion

to move the problem away from a region of marginal stability.

Co
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As indicated by the indices, the corrections are explicit and vary

spatially. The computing time and storage for the corrections are good

investments if the method stabilizes the computations. As will be

seen, this is often the case.

Besides the B correctors, stability is assured by setting an up-

per limit on At of

2 2
At <1 p (AR) (AZ) (5-57)

4 (AR)2 + (AZ)

This is a two dimensional analog to equation (5-5). Smaller values of

At were always used in practice, because numerical trials indicated

that they were needed to provide good resolution of the time dependent

aspects of the solutions.

The results of the numerical tests will be presented and discussed

next.



Chapter 6

NUMERICAL RESULTS AND DISCUSSION

A. Introductory Comments

This chapter presents the results of a sequence of numerical tests

of the basic ICE algorithm and its modification and extension. This

includes the addition of outer iteration using all first order

terms in the hybrid function, the addition of the stability correc-

tors, and the inclusion of multispecie diffusion and chemical reaction.

The numerical solutions are compared with analytical and other numeri-

cal solutions where possible. New transient and steady state solutions

are shown.

The sequence of problems solved proceeds in the direction of in-

creasing complexity. Initial tests were performed on three transient

problems that were essentially one space dimension in nature. Thus ap-

pearance of significant quantities in the second spatial dimension

would indicate errors in the computer code or a failure of the algo-

rithm. Both incompressible and fully compressible problems were run.

The first two-dimensional problem was one describing the boundary

layer buildup in the entrance region of a tube after flow is abruptly

started. Attempts at calculations of transient coaxial flows led to-

major instabilities. This prompted inclusion of the 8 truncation

83
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error corrections with dramatic improvement. Numerical experiments

showed the advantages of the ADI method in inverting the P. matrice,

and this was adopted.

The addition of multicomponent capability caused new stability

problems which were treated by developing an implicit solution of the

species equations. Finally chemical reaction was included. Solutions

for dilute component reaction were run without difficulty. Later com-

putations of reacting flows with strong coupling between chemical re-

action and the fluid dynamics showed serious instability which could

not be treated within the scope of this effort.

The boundary conditions for each problem are discussed briefly as

a supplement to the detailed presentation in Chapter 4. Values of time

step size, grid size, dimensionless groups, and so forth are found in

Table 1.

As noted in Chapter 4, the solution accuracy was measured by the

error in the mass conservation equation over one time increment. This

in turn is controlled by the convergence of the P iteration. The

convergence is tested by

IpQ+l - pQI
2 < (6-1)

IPQ+l1 + IPQ
The exponent on c specifies the decimal place on P which must con-

-3-
verge, regardless of the exponent on P. Thus if = 10- 3 , P must

converge to three decimal places, such as 2.345x10-8; Generally c

-4 -6
used varied from 10 to 10



85

B. Computer Facilities and Computer-Drawn Plots

The solutions were carried out on the NASA Lewis Research Center

IBM 360/67 computer. This is a time sharing system (TSS), using vir-

tual memory and a paging system to locate and move data in and out of

core storage. The Lewis computer is duplexed with two central process-

ing units (CPU) and a combined core storage of 2.5 million bytes (4

bytes per word). Virtual storage essentially provides unlimited stor-

age during execution.

The computations were run in double precision, giving approxi-

mately 13 decimal places of significance. The time sharing mode was

employed to permit periodic interruption and examination of the pro-

gress of the solution. During the interrupts, values of any variable

could be displayed on the terminal, and certain operating parameters

such as the time step size could be changed. Due to the time sharing

mode, CPU run times cited herein are approximate.

Output was written into datasets during the run which were dumped

onto the IBM 1403 printer and/or onto a 9 track tape after the run was

done. The tape was later read into a plotting program which used a

set of library subprograms to generate plots on a CDC Model 280 cathode

display unit. The video plots were photographed by a 35 mm single

frame camera, and plots were made directly from the film. The basic

library subprograms are described by Kannenberg in reference (33).

The dependent variable data taped for plotting were triply sub-

scripted to denote R, Z, and t values. Plots were made in the time

sharing mode by first selecting a value for one of the three independ-

ent variables. The plotting program then arranged the appropriate data
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to form a two dimensional array and fitted the array to a surface using

a procedure by Akima (1). This surface of dependent variable values

could be projected as a three dimensional plot using Canright and

Swigert's subprograms (10). The surface could be sliced horizontally

to produce contour curves plotted by a routine by Lawson, Block, and

Garrett (36). Slices through the other two directions produced X-Y

type plots.

A pictorial plot could be made to display the total velocity field

at a fixed time. The magnitude and direction of the flow is shown by

the size and direction of arrows distributed over the R-Z field. As

an alternative, only direction is shown to clarify the flow direction

where the magnitude is small. The bases of the arrows locate the posi-

tion of the velocity being represented.

The plotting program was developed parallel with the numerical ex-

perimentation. Thus the figures which describe the early computations

are hand drawn, and the computer plots are used for the coaxial entry

problems. It is emphasized that the Akima surface fit gives a very ex-

cellent fit which essentially passes through all the input points.

Thus the results are not smoothed by this fitting procedure, but rather

made continuous.

C. Startup of Incompressible Laminar Flow in an Infinite Tube

This problem is characterized by axial velocities which are a func-

tion of R and t only. No radial velocities occur. A constant up-

stream pressure is suddenly imposed on a tube containing an incompress-

ible fluid at rest. A linear axial pressure gradient results and is
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maintained. The fluid starts motion as slug flow, but the no slip wall

condition causes transition to parabolic Poisieulle flow at large

times. The analytical solution can be found in any standard fluid dy-

namics or transport text such as Bird, Stewart, and Lightfoot (4).

This problem was selected as a starting point because (1) the

simplicity of the problem allowed easy tracing of program errors, and

(2) the numerical results could be compared with the analytical 
solu-

tion and also with an available MAC numerical solution. To make the

last comparison, the fluid was specified as blood at 3100 K, p 
= 1.05

gm/cm3 , p = .04 gm/(cm-sec). The Reynolds number was 205. Boundary

conditions are straightforward, with Q.= 0 due to incompressibility

giving the necessary velocities outside the input, output, and wall

boundaries.

The results are shown in figure 4 as radial profiles of the axial

velocity at select times. The solid line is the analytical solution

and the ICE solution is shown as discrete points. Three cell mesh

sizes were run to check the convergence behavior, which should be sen-

sitive only to the radial solution. The cell aspect ratio was ad-

justed to keep the tube length constant. The numerical and analytical

solutions compare very well in time and space. Remarkably, even the

4 x 4 grid gives a reasonable solution, although numerical values are

somewhat higher at later times. The coarse grid has difficulty repre-

senting the velocity gradient near the wall. On the first time step,

only the upstream input pressure was specified, and the P iteration

produced the correct linear axial gradient. The P convergence cri-

S10-8
terion was set to the rather severe value of 10 resulting in



88

negligible radial velocities and continuity errors. CPU times ranged

from three to eight minutes. This test of ICE on a simple incompress-

ible flow was quite successful.

D. The Shock Tube Problem

A fully compressible flow occurs when a diaphram separating high

and low pressure compartments in a tube is abruptly removed. This

condition exists when the diaphram of a shock tube is cleanly burst.

The gas is air at 200 C. A shock wave propagates downstream through

the low pressure gas and a rarifaction propagates upstream. The con-

tact surface, a density discontinuity which denotes the original posi-

tion of the diaphram relative to the gas, moves downstream with the

gas. Initially, the temperature is uniform. It rises at the shock and

falls at the rarifaction.

The fluid dynamics of a shock tube can usually be well represented

as an axial transient flow. Only the formation and propagation of the

waves to the tube ends was computed. The problem was formulated with

no slip walls and reflective ends. A run with zero viscosity gave iden-

tical results over the short time period considered (1/2 millisecond).

Inviscid theory can be used to predict the positions of the various

waves and the levels that the variables should approach upon passage of

the waves.

The results of the primary variables, P, p, U, and I, are shown

in figures 5a through 5d. CPU time for this run was 3 minutes. The

pressure rarifaction should not be a discontinuous wave, but even so,

both the rarifaction and the shock show considerable numerical smear-

ing. The shock shows overshoot and the pressure trailing the
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rarifaction indicates some numerical oscillations. No B corrections

had yet been put into the numerical program. The oscillations are

prominent in the density profile and especially in the internal energy

profile. The energy oscillations are due in part to the computation

being run with no thermal conduction. It was not realized at that time

that thermal conductivity damped such oscillations as effectively as

viscosity [see Harlow and Amsden (26)]. In addition, Hirt (29) predic-

ted that numerical instability could arise in this region due to trun-

cation errors associated with third and fourth order differentials.

Such differentials are important due to the steep gradients in the

shock tube problem.

Despite these difficulties, the waves at any position damp as the

fronts moved away. The profiles of all variables show the proper qual-

itative and quantitative behavior. The density profile has four levels

due to the contact surface, and the internal energy rises in the com-

pression zone and falls in the rarifaction zone. The positions and

levels associated with the fronts as calculated by the ICE method com-

pare very well with inviscid theory, even if oscillations are present.

As discussed in Chapter 2, shock calculations are usually made with an

added artificial dissipation. Such a term is not used in the present

version of ICE, and some instability is to be expected. Thus the ap-

plicability of the ICE technique to compressible flows seems well

demonstrated.

Additional numerical experimentation was performed. Figure 6 shows

the effect of using a smaller time step size. The solid line is the

same as figure 5a. The smaller At provides steeper fronts and better
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stability. A small At offers greater resolution of temporal behavior,

hence the steeper fronts. This is a valuable characteristic of the ICE

method. The time step size is chosen to resolve phenomena of interest.

Thus a small At is used to examine shocks, and a large At is used

for very slow flows where acoustic behavior is unwanted. A smaller time

step also provides a better computation for an impulsive start as in the

shock tube problem. This affords greater stability later in the course

of the computation, as shown in figure 6.

The expanded hybrid function which retained the other first order

term In+ l was also tested. The results are shown in figure 7. The

n+l
solid curve is the same as figure 5a since no iterations on I

means In is used, and the extra term vanishes. No discernible dif-

ference of the pressure profile is detected after one replacement of

n+l
In+ . Remarkable stability improvement is seen, but the added numeri-

cal diffusion smears the wave fronts, which is undesirable. For this

n+l
reason and because even one outer iteration on I almost doubles

the CPU time, the expanded hybrid function was not used for the re-

mainder of this study. Its use is recommended only as an aid in sup-

pressing numerical instability.

The effect of time centering the equations by setting 0 = c = .5

is shown in figure 8. Both implicit and time centered pressure profiles

are shown for two times after the diaphragm is removed. As predicted by

Hirt's stability analysis, time centering steepens the fronts at the ex-

pense of stability. This is especially true for the region just behind

the shock. However, the waves do die out at fixed Z positions.
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Longer calculations would be needed to verify whether or not the num-

erical oscillations directly behind the shock front will grow un-

bounded.

As a final experiment, a one-dimensional B truncation error

correction was inserted in the mass equation to see if the oscillation

amplitude would decrease. Figure 9 displays the results of a time

centered test. The exact correction did not affect the oscillations,

but adding four times the absolute value of the correction cut the

perturbations in half. Such a massive correction is unjustifiable

theoretically, but it did show the nature of the B corrector. Note

that only the unstable region of the profile was affected. The shock

and rarifaction fronts are the same, as are the levels behind them.

To properly stabilize the shock tube calculation, mass, momentum, and

energy correctors are necessary, including the important higher order

differentials.

E. Incompressible Tube Flow with an Oscillatory Upstream Pressure

Perturbation

This problem was used to test the ICE program with oscillatory

flow. A tube holding an incompressible fluid is subjected to an up-

stream axial pressure which has mean and oscillatory components. The

oscillatory component has an amplitude which is 10% of the mean com-

ponent so no net flow reversal occurs. However, if the mean flow is

subtracted from the total flow, the resulting velocity perturbations

do reverse direction.
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An analytical solution for the steady cyclical state of this prob-

lem has been carried out by Uchida (50). The axial velocity is assumed

independent of Z, making linearization possible. The analysis shows

that as the frequency of the pressure oscillation increases, 
the velo-

city oscillations act more like oscillating plug flows.

The boundary conditions for the numerical solution of 
this problem

are the same as for startup of incompressible flow in an infinite tube.

The exception is the oscillatory upstream pressure. The numerical sol-

ution was run first by assuming that the flow was already at the steady

cyclical state. The initial condition on axial velocity was taken from

Uchida, and the computation was carried out for a few cycles to 
allow

comparison with Uchida's solution.

The results are shown in figures 10 and 11 for dimensionless fre-

quencies of 3 and 10 and a fractional pressure perturbation 
of 0.1.

The fluid was air at 450 C. The ordinate is the velocity perturbation

amplitude that is superimposed on the mean flow, normalized by the

fractional pressure perturbation impressed on the flow. A comparison

of figures 10 and 11 indicates that the lower frequency produces an

oscillatory flow which is strongly affected by shear stresses, whereas

the higher frequency causes a flat profiled, plug-type flow that is

dominated by inertia effects. In both figures the numerical and ana-

lytical solutions compare well, but for a dimensionless frequency of

10, the numerical solutions near the wall lag slightly.

There are some errors in producing the plots. The ICE program

calculates the total velocity including the mean and perturbation.
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The steady state Poisieulle solution, calculated from another computer

program, is then subtracted from the total to give the velocity per-

turbation. Normalization by the fractional pressure perturbation causes

a multiplication by 10. Thus an ordinate value of .01 on figure 11 ac-

tually represents only a 0.1% variation of the total flow. Therefore

a small difference generated in processing the numbers gives a sizeable

deflection on figure 11, and in fact the analytical and numerical solu-

tions compare very well.

Further experiments on convergence showed that a reduction of grid

size from 20 x 5 to 10 x 5 gave a poorer comparison between analytical

and numerical solutions for the lower frequency. Evidently a AR near

.05 is necessary to represent boundary layer effects. Reducing the

time step size from n/30 to r/60 improved the higher frequency sol-

ution, but a further reduction in At offered little gain.

An extension to the oscillating flow problem was made by starting

with the flow at rest. The upstream pressure was suddenly raised to

the higher oscillating.value, coupling the normal laminar startup with

the oscillatory flow startup. A run starting from rest and continuing

until the steady cyclic state was reached took 15 minutes of CPU time.

The velocity perturbations were found by subtracting the transient

mean flow predicted by an analytical solution.

Figure 12 shows a velocity perturbation profile at the same cycle

time, 2nRt, for a reduced frequency of 5. The oscillatory component

almost reaches the cyclic solution within one cycle. The steady cycli-

cal numerical values are slightly high. As discussed before, the
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ordinate scale is expanded, and the constant difference between the

numerical and analytical values along the tube radius suggests a small

error in data reduction.

Figure 13 shows the final cyclic solution which proceeded from 
a

flow starting from rest. A number of cycle times are represented. The

comparison with the analytic solution is good. All numerical values

again are slightly high, indicating a data processing error. In con-

clusion, the ICE method handles oscillatory flows quite well provided

that the grid cell size is small enough (AR = ~.05) and a suitably

small time step is chosen to give adequate transient resolution.

F. Transient Incompressible Entry Tube Flow

The entry problem is dependent on two space dimensions. A uniform

velocity is abruptly applied to the entrance of a tube filled with an

incompressible fluid initially at rest. The fluid behaves like plug

flow at first, but a boundary layer begins to build up. The boundary

layer trails from the entrance edge of the tube. At steady state the

uniform input flow changes to Poisieulle parabolic flow for a suffici-

ently far downstream position. The steady state solution to this prob-

lem.has been treated by Hornbeck (32), and Friedman, Gillis, and Liron

(19), among others.

The numerical version of this problem is considerably different

from the previous test problems in another respect. Previously, the

pressure condition was specified and this provided the driving force.

In this and the remaining problems, the input flow is specified. -This

flow drives the fluid through the tube and the proper pressure field is
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computed to accelerate and turn the internal flows. The momentum equa-

tion is applied at the input boundary to compute the pressure gradient

across the input. Thus the mean value at the input can "float" during

the P iteration until the entire pressure field has the proper curva-

ture.

To test the ability of the P iteration to give the correct pres-

sure field, an artificial problem was run as follows: the incompress-

ible fluid is initially moving through the tube in axial plug flow. At

t = 0, the entrance and exit are abruptly blocked. By the end of one

At, the fluid should be essentially stopped. The test was run with

-4
free slip walls. In one At = 10 , the flow was reduced from 1.000 to

less than 10- 3 . When the test was rerun with a no-slip wall, the bulk

flow was again essentially stopped. But the asymmetric boundaries (no-

slip at the wall and free slip at the centerline) caused a very weak

eddy circulating down the axis and up the wall. Although trivial, this

result is not physically inconsistent. The test of the P iteration

was considered a success.

The results of the entry flow problem are shown in figures 14

through 18 for air at 450 C. Figure 14 shows the steady state axial

distribution of the axial velocity at several radii. In.Hornbeck's

paper, velocity values are given for different radii, but linear in-

terpolation can be used to give check points at R = .05 and .95.

Agreement is good. The interpolation of the points at the lowest Z

position is the least accurate, and those points show the-most disa-

greement. Since a horizontal profile means that the flow is constant
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with length, the figure shows the growth of the steady boundary layer

toward the tube centerline as the flow progresses-downstream.

Figure 15 is a plot of the steady-state radial profiles of axial

velocity at various Z positions. The transition from the flat input

velocity profile to the parabolic output profile is cl'early seen. Much

of the transition takes place near the input. Friedmann et al. (19)

have observed that near the entrance, the profiles show a maximum which

does not occur on the centerline. This effect is seen on the Z = .667

profile. Friedmann et al. attribute it to the fact that the leading

edge of the tube propagates pressure signals upstream so the flow be-

gins to turn before coming to the tube. This is more predominant at

the low Reynolds numbers. An input boundary condition cannot describe

these complex upstream effects. If the edge wall boundary condition is

set so that the constant input velocity extends to R = 1.0 instead of

R = .95, exactly the same solution results.

The radial flows at steady-state are shown in figure 16. A pres-

sure spike develops at the leading edge of the tube to turn the flow

toward the tube axis. The radial velocities decay rapidly with length

and vanish where the flow is fully parabolic. At Z = .33, the radial

velocity has a maximum magnitude which is 13% of the input axial

velocity.

Transient axial velocity profiles are shown in figures 17 and 18.

Steady state is achieved quite rapidly near the input boundary and

near the wall. If a plot like figure 18 is constructed at Z = 20,

the resulting profiles are almost identical to those of figure 15.
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The ICE method works quite well for the entry problem. 
It can

provide additional information on radial 
flows and transient flows that

simpler analyses cannot provide. CPU time was 26 minutes.

G. Stabilization of Coaxial Flow Calculations by the 
B Truncation

Error Corrections

One of the major goals of this study was to incorporate multi-

specie flows. Successful computation of coaxial entry 
flows was an

essential step to that end and a worthwhile goal in itself. The coax

injector has been a standard mixing device 
for some time. A number of

studies of steady-state flows such as Ghia et al. (22) and Weinstein

and Todd (54) have supported conceptual designs of gaseous 
nuclear roc-

kets. Flow recirculation is possible if the ratio of the center tube

and annulus velocities becomes very large or very small. This has been

experimentally studied by Warpinski, Nagib, and 
Lavan (53). To this

writer's knowledge, no numerical studies of transient or short tube 
co-

axial flows have been published.

Besides varying the input flows, two extremes of tube length sug-

gest themselves. An extremely short tube allows resolution of the

-flows very near the entry point. This can not be done for long tubes

due to the limitation on the number of mesh cells which will give a

reasonable computation time. The other extreme is a long tube of suf-

ficient length such that the output flow is parabolic.

Wake effects from the boundary separating the two entry flows have

been studied by Paris (41) for parallel plates. Seider (47) was unable

to use a mesh aspect ratio greater than .05 without incurring
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instability in this computation of tube flows with coaxial parabolic

entry. He attributed this to wake problems.

A short tube problem was attempted for air at 450 C, with an input

velocity ratio of 2.0. The fluid is initially at rest and is subjected

to a step coaxial input at t = 0. The center and annular flows were

each uniform. The tube length was equal to its radius. A 20 x 20 mesh

was used with square cells. This mesh is the largest that could be

used with the available computer speed. Figure 19 shows the cata-

strophic instability which occurred when this problem was attempted. A

long tube run was then tried with RA = °05. A smooth steady state so-

lution was obtained, but the transient solution showed numerical oscil-

lations which eventually damped.

At this point the corrections were added to the computer pro-

gram and the short tube problem was rerun. The coefficients on 8,.

and = VZ (called BV) were set equal to 0 and 1.01, respec-

tively. The results were remarkable. All numerical oscillations van-

ished and the problem was computed to steady state. Figure 20 shows

results which may be compared to figure 19 for t = .07 and .10. The

scales on these computer drawn plots are set -by the graphics program

and differ. It is seen that the stable portions of figure 19 compare

exactly with the similar parts of figure 20. These results were most

encouraging.

H. Short Tube with Coaxial Entry - Velocity Ratios = 2 and .05,

Velocities = 10 and 20 cm/sec

The next series of coaxial problems (Sections H, I, and J) were

run using air at 45 .C as the single fluid. The coaxial runs were
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identical whether run as compressible or incompressible 
fluids. At

these slow speeds the compressibility effects should be negligible, and

they were. As mentioned before, the upstream pressure was computed by

applying the momentum equation at the input. 
The downstream pressure

was fixed. Input and output density was computed using the equation of

state. The problems were started at the time steps shown in Table 1.

The time steps were increased throughout the run using the 
TSS mode of

operation. The progress of the run was monitored to guide 
the in-

creases on At.

The formidable problem of presenting the results of these trans-

ient, complex flows was aided by the computer plotting routines. 
About

50 to 100 plots were made for each run. Many of these were difficult

to interpret without extensive cross comparison. It was decided to

show the transient results in a semi-quantitative manner using three-

dimensional (3-D) plots at select times. The steady state plots are

mainly radial profiles at select axial positions.

Figures 21a through d show the axial velocity at several times for

the velocity ratio of 2. The axes of perspective are given by the min-

ature X-Y-Z coordinate system on the right. For all 3-D plots the Z

axis denotes the magnitude' of the dependent variable, the. Y axis

points in the radial direction, and the X axis points in the axial

direction. The maximum and minimum values along each axis are given.

The scale of the figure changes from plot to plot. Viewing these fig-

ures in the time sequence shows that initially the coaxial inputs pro-

duce a uniform output. With the passage of time, the high center
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velocity and low annular velocity move toward the exit while trans-

ferring momentum at their interface and at the wall.

Figure 22a shows a 3-D pressure plot right after the flow starts,

and figure 22b shows the pressure field at steady state. Note that the

vertical scales differ, and in examining figure 22a, note that the

pressure spike in the center of the input boundary points down. All

the 3-D plots have no hidden lines. A strong gradient is set up at the

inside wall of the annulus, hereafter called the annular edge. The

gradient forces the high velocity center input to turn outward and

raise the velocity in the annular region. At the same time the leading

edge of the wall is forcing fluid toward the centerline. At steady

state the flow field is established, and the fluid already is acceler-

ated. Then a strong driving force is no longer needed and the radial

pressure gradient is considerably weaker, as seen in figure 22b.

The radial flows are so complex that it is impossible to find a

figure that can present them properly. In brief, the initial flow is

mostly outward with the maximum at the annular edge. At steady state,

the center tube radial flow is weakly inward and the annular flow is

strongly inward, which decreases the radial gradient of axial velocity

between the two streams.

- The steady state radial profiles of the axial and radial veloci-

ties are displayed in figures 23a and b for select axial positions,

Figure 23a shows the rapid dissolution of the steep velocity gradient

separating the two fluids. This region of high shear stress promotes

rapid momentum transfer. The complexity of the radial flows is seen in
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figure 23b. The wall is always moving the fluid inward, but there is a

small outward flow near the entrance at R = .5 which is raising the

axial velocity in that region. CPU time was 36 minutes.

To further characterize the entry region for coaxial inputs, the

short tube problem was run with the higher velocity entering through

the annulus. Since the wall drag tends to force the fluid toward the

centerline, the velocity ratio of .05 was expected to cause larger

forces to be impressed on the fluid. This could make the numerical so-

lution more difficult. When the problem was run with BV 
= 1.0, it be-

came unstable at t = .16. Evidently the B corrector removed some

stabilizing errors. Some numerical experiments were run increasing BV

above 1.0, since this adds the absolute values of the error corrections,

cancelling negative corrections, and improving stability. Tests were

made with BV  as high as 2.0, which changed the third significant fig-

ure in velocity values after the computation had proceeded part way

through the problem. A value of BV = 1.5 caused a maximum change of

one digit in the fourth place. This BV value was used and the prob-

lem ran to steady state (t = .26) successfully.

The-results are shown in figures 24 and 25. Figures 24a through

24d are 3-D plots of the axial velocity. As with the previous problem,

the initial response of the fluid to the step impulse input is to move

in plug flow. This is seen in figure 24a. Progressing from upstream

to downstream, the axial velocity rises in wave along the tube center-

line and falls in a wave along the annulus centerline. This condition

is the inviscid solution to the initial conditions. As time progresses

these waves convect downstream and the flow slants toward the centerline.



102

Plots of the steady state velocities are shown in figures 25a

and b. Although the maximum axial velocity in the annulus is increas-

ing, the mass flow is decreasing. The only outward flow at any time in

the problem occurs just downstream of the annular edge, and the pres-

sure profiles show the wall and annular edge effects. About 30% of the

way down the tube, the initial turning of the flow has essentially been

completed.

I. Long Tube with Coaxial Entry - Velocity Ratios = 2 and .05,

Velocities = 10 and 20 cm/sec

The method was applied next to a long tube using cells twenty

times longer than wide. This provides less detail in the axial direc-

tion and also leads to smaller radial velocities, since the first com-

puted value is already one tube radius downstream. These radial cross

flows can cause nonlinear instability, so their lessening was expected

to give favorable stability.

Since the tube length is ten diameters, the exit flow should ap-

proach a parabolic profile for the low Reynolds numbers of these prob-

lems. The length of ten diameters is near the practical maximum for

the computer used, due to speed and storage limitations. A lower as-

pect ratio would be less accurate. If only steady state solutions

were desired, the appropriate steady equations could be used with a

numerical marching technique and any length could be used. Ghia et al.

(22) used this method to follow solutions for over 250 diameters down-

stream.
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The results are shown in figures 26 and 27 for a velocity ratio of

2. Transient runs are shown in the series of figure 26. The initial

impulses convect down the tube, but they are overwhelmed by the bound-

ary layer buildup in the long tube and associated flow increase on the

axis. The steady state values are shown in figures 27a through c.

Full parabolic axial flow is almost achieved at Z = 20, and the pres-

sure field becomes almost linear with tube length after Z = 2. CPU

time was 85 minutes for this run.

No transient 3-D figures are shown for the long tube with an en-

try velocity ratio of .05. Figures 21, 24, and 26 provide sufficient

insight into how the flow develops. The steady state values are shown

in figures 28a to c and are consistent with the short tube results.

Due to the initially low centerline velocity, the axial velocity at

Z = 20 is not yet parabolic, and the centerline velocity is only 90%

of the final value. CPU time was 34 minutes.

In summary, the ICE method with B stabilization allowed calcu-

lation of transient coaxial-entry problem and short tube problems which

were not previously available. Since these flows were quite nonlinear,

the versatility and stability of the method is well demonstrated.

J. Center Jet Flow into a Larger Tube - Velocity Ratio = m,

Velocity = 20 cm/sec

A complete parametric survey of velocity ratio, area ratio between

the center tube and annulus, and Reynolds number was not run for the

coaxial entry problem, nor was 'such an effort appropriate for this
--;

study. However, recirculation zones represent another increase in
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complexity of flow and thus are of interest to this study. Recircula-

tion in coaxial jets was found by Warpinski and Nagib (53) to exist

above velocity ratios of 8 for Reynolds numbers greater than 400. It

was decided to run a coaxial problem with no flow in the annulus.

This gives an infinite velocity ratio and is the same as a jet issuing

into a larger diameter tube. A tube of intermediate length, five radii

long, was chosen. Previous coaxial tests were made with the fluid as-

sumed incompressible, then checked in part with an identical compress-

ible fluid. The calculation described in this section was run to

steady state for both compressible and incompressible identical fluids

and gave identical results.

The transient solution is shown in figure 29 as pairs of diagrams

which show the velocity field and the flow'direction at four times.

The figures labeled "Velocity Field" have arrows whose magnitude and

.. direction refer to flow values located at their origin. The arrows

are normalized to the maximum velocity in the field and that value is

given at the base of the figure. Figures labeled."Flow Direction" use

arrows whose lengths are independent of the flow velocity to show the

directioh of small magnitude flows. At t'= .04 the local 'impulse of

the jet is seen dispersed over the entire tube. But by t = .1 a

small amplitude recirculation zone was formed in the annular. portion

of the tube. Figures (e) through (h) show the growth of the eddy down

the tube. Figure' (h) shows that the jet has filled the tube at steady

state, inasmuch as the eddy is contained within the tube with no back

flow into the tube along the wall at the downstream boundary. However,
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figure 29g shows that most of the fluid flow is still in the center of

the tube.

The steady state velocity profiles are shown in figure 30. The

negative axial velocities between R = .6 and the wall indicate the

recirculation zone. No signs of instability occurred during the run,

and the ICE method handled the recirculation flows quite easily. CPU

time was about 80 minutes.

K. Coaxial Parabolic Entry Flow with Specie Diffusion and Chemical

Reaction

The success of the stabilized ICE technique with all the problems

previously described encouraged the incorporation of the species con-

servation equations into the algorithm. The study by Seider (47) was

taken as the comparison case. This author examined the steady flow of

fully developed coaxial streams into a larger tube where the fluid was

nitrogen with tracer quantities of hydrogen in the center jet and

iodine in the annular jet. As the streams mix, hydrogen iodide is

formed irreversibly.

The use of trace quantities decouples the-species equation from

the mass momentum equations since negligible heat is released and in-

consequential density changes occur. Seider transformed the primitive

flow variables to stream function and vorticity, and rearranged the

two species equations so that the mixing without reaction could be

calculated first, and the results used in a reaction equation. The

latter technique is valid only for two-component reactions.
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The sequence used in solving the species equation in the present

program was described in Chapter 4 and is applicable to multicomponent

reactions. This method evolved from numerical experimentation. Ini-

tially it was planned to solve the species equation explicitly over

the full time increment, but this scheme was unstable. Then the equa-

tion was made entirely implicit and solved repeatedly until the values

converged. It provided more stability, but it appeared that the reac-

tion equation was overshooting on each time step. Finally the algo-

rithm was put into its present form with only the convective fluxes

implicit and the diffusive terms explicit. The matrix is inverted by

the ADI method and the time steps subdivided for more stability.

Seider's problem was run for the condition of total Reynolds

number = 496 (NRe = 248). There were some inconsistancies in the in-

put conditions which were treated by setting the pressure quite high

to give .005 mole inputs of the tracers. The problem was run as an

unsteady case with the parabolic entry suddenly impressed upon the

tube whose contents were initially at rest. The initial fluid compo-

sition within the tube was arbitrarily set as a core of nitrogen plus

hydrogen and an annular cylinder of nitrogen plus iodine. After the

problem came to steady-state, the reaction was "turned on" by reset-

ting an index within the time-sharing cpmputer mode, and computation

proceeded to the new steady-state. CPU times were difficult to esti-

mate under these circumstances but probably ranged from one to two

hours.

The results are shown in figures 31 through 34. It is impos-

sible for a 20 x 20 grid to exactly duplicate Seider's entrance



107

condition because the axial velocity is not defined at the annular

edge. Hence the value of U for Z = 0 does not go to zero at the

annular edge, and furthermore, the annular edge is located at 
R = .55

rather than .563 which Seider used. Nonetheless, the axial velocity

profiles appear almost identical to Seider's graphical results. 
Fig-

ure 31b shows radial velocity profiles, which Seider did not report.

The results of the ICE computation of the mixing of the core jet

were compared with Seider's results for no reaction in figure 32. The

comparison is excellent, giving confidence to both the total fluid

dynamics and the species mixing. The results with reaction were less

pleasing. Seider computed a fractional conversion of the hydrogen 
of

.17 at Z = 20, while the ICE computation gave about .13. In the ab-

sence of comparison with data, the relative accuracy of the two num-

bers cannot be discerned.

The steady state concentration profiles with reaction for H2, 12'

and HI are shown in figures 33a through c. Except for Z = 20, the

curves in 33a and 33b look essentially the same since reaction is slow.

Seider did not keep track of the hydrogen iodide reaction product in

his calculations. Figure 33c shows the concentration profiles for this

specie, and some interesting additional information is contained there.

The peaks of the profiles shift to lower radius values with increasing

Z up to Z = 8 because there are small but appreciable radial flows

toward the axis over that length (see figure 31b). The strange profile

at Z = 20 is due to the longer residence time of the fluid near the

wall. These fluid elements have more time to react provided that the
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hydrogen has reached the wall, which figure 33b shows it indeed has

done between Z = 3 and. 8. The effect of boundary layer drag on

chemical conversion is also shown in the contour map of the HI con-

centration, figure 34. The higher values and steeper concentration

gradients in the upper right of the figure show the wall effect. The

shift of the profile peaks toward the axis may also be seen.

Seider reported that instability resulted when cell aspect ratios

greater than .05 were tried. To show the superior stability of the

present method, a computation with RA 
= .2 was run and the results

are shown in figures 35 and 36. No stability problems ensued, the re-

sults are consistent with those of the longer tube, and more detail

near the injection point is available. The test was a complete

success.

L. Attempted Solution of Coupled Reaction and Fluid Mechanics

At this point it was apparent that some intricate computations and

parametric surveys could be made studying the mixing and reaction of

small concentrations of reactants in recirculating coaxial flows. How-

ever, it seemed more consistent with the rest of the study to attempt

the last step, that of coupling reaction and flow by computing the mix-

ing and oxidation of carbon monoxide with air. This problem was of in-

terest to pollution, and the.detailed chemical reaction steps had been

studied by Brokaw and Bittker (8). They used a mixture representative

of automobile exhaust with the assumption that the reactants were ini-

tially well mixed. A global rate could be gotten from these calcula-

tions (see Appendix B). A similar mixture was used here and the
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composition is listed in Table 1. Although aBhY 10% CO was present, a

temperature rise of 200-300
° F was expected. This could accelerate

the compressible fl~ soch that the constant o*stream pressure as-

sumed for earlier c(eiaial runs and justified 
1f Shapiro (48) might no

longer be valid. However, that assumption wa# r
jtainedat the start.

The paper of Brokaw (7) was used as a basis 
f d pimplifying the compu-

tation of mixture transport properties, and &khB
e properties were pro-

vided by Svehla (49).. Thermodynamic data wete totten from 
Gordon and

McBride (23).

It was decided to first attempt a solutih 
with no reaction. The

problem was started as impulsive uniform coax'
10 flows of air in the

center tube and the hot gas containing CO jT Tlhe annulus. The tube

initially contained air. The calculation prc peled very well to

t = .065 when disasterous dynamic instability 
OCcurred. Figure 37

shows the last temperature profile obtained. 
(e can be seen that in-

stability is present in the profile near the Mig~ng zone. Reducing

the time step did not help. At this point th numerical experimenta-

tion was stopped.

It is felt that there were two prime re
5-4S for the instability.

First, no truncation error corrections had beeP derived for the energy

equation because of the massive effort it ent ll-ed and because there

was no indication of dire need. Second, it Og suspected that more

cells in the radial direction were needed for 
rpnvergence under the

severe temperature and density gradients posed 
Oy the problem. This

difficulty could not be treated within the c#Rci
ty of the present

Reproduced from
best available copy.
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computer. These facts plus time restrictions caused the study to be

terminated. However, the superior applicability of the method was

demonstrated and it is this author's opinion that the method can also

be applied to strongly coupled flows.



Chapter 7

CONCLUSIONS AND RECOMMENDATIONS

1) The Implicit Continuous Eulerian (ICE) method has been shown to be

applicable to transient, two-dimensional calculations of both high

and low speed compressible flows and to incompressible flows.

2) The inclusion of truncation error corrections based on Hirt's sta-

bility theory provided excellent stability behavior without dis-

torting the numerical results.

3) The stabilized ICE method permitted computation of coaxial entry

problems which were previously impossible due to wake effects.

4) The method successfully treated complex flows such as unsteady re-

circulation zones.

5) The addition of multicomponent mixing and chemical reaction was

successful for flows without strong coupling between reaction and

fluid dynamics.

6) The expansion of the hybrid function to include outer iteration on

the internal energy caused greater stability at the expense of ex-

cessive numerical diffusion and computer time. The use of the ex-

panded hybrid function is not recommended.

7) The iteration of the pressure field using successive over-

relaxation (SOR) and an alternating direction implicit (ADI)

111
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technique gave identical results. The SOR method was faster for

meshes with square cells while the ADI method was faster with long

rectangular cells.

8) The application of the method to problems characterized by strong

coupling between reaction and flow was unsuccessful.

9) It is recommended that experimentation with the ICE method continue

with flows strongly coupled with reaction. This includes (a) der-

ivation and testing of a truncation error correction for the energy

equation, (b) experimentation with time centering for compressible

flows, and (c) use of larger grids.



Table 1 -.Description of Computations

Problem T* P* 2 * 3 M* 2 C* 3
Type # Description Fluid *R (gm/cm sec ) gm/cm ms/gm-mole cm /sec gm-moles/cm

1 Incompressible Startup in an Blood 310 1.013x106  1.050 38.66 -
Infinite Tube

6 -3 9
2 Compressible Flow in a Shock Air 293 1.013x10 1.206x10 29.00 2.100x10 -

Tube

3 Steady Incompressible Cyclical Air 319 1.013x106 1.108x10 -3  29.00
Oscillatory Flow

4 Incompressible Transient Air 319 1.013x106  1.108x10 -3  29.00 -
Oscillatory Flow

5 Incompressible Tube Entry Air 319 1.013x106 1.108x10-3 29.00 -
Flow

6 Coaxial Entry in a Short Tube. Air 319 1.013x106 1.108x10-3 29.00 2.286x109

Length=l radius, Center Tube
Velocity=20 cm/sec, Annulus
Velocity=10 cm/sec

7 Coaxial Entry in a Short Tube. Air 319 1.013x106 1.108x10 -3  29.00 2.286x109

Length=l radius, Center Tube
Velocity=10 cm/sec, Annulus
Velocity=20 cm/sec

6 -3 9
8 Coaxial Entry in a Long Tube. Air 319 1.013x10 1.108x10 29.00 2.286x10 -

Length=20 radii, Center Tube
Velocity=20 cm/sec, Annulus
Velocity=0lcm/sec

9 Coaxial Entry in a Long Tube. Air 319 1.013x106 1.108x10 -3  29.00 2.286x109

Length=20 radii, Center Tube
Velocity=10 cm/sec, Annulus
Velocity=20 cm/sec



Table 1 - Description of Computations (Continued)

Problem T* P* 2 * M3 * 2 C* 3
Type #. Description Fluid OR (gm/cm sec2  gm/cm 3 gms/gm-mole cm sec gm-moles/cm

6 -3 9
10 Coaxial Entry in a Center Tube Air 319 1.013x10 1.108x10 29.00 2.286x10 -

with Length=5 radii, Center
Tube Velocity=20 cm/sec
Annulus Velocity=0 cm/sec

9 9 1
11 Coaxial Parabolic Entry in a N2, 716 2.586x10 1.217 28.02 5.312x10 3.409x10

Long Tube. Length=20 Radii. trace
Center tube max. velocity = H2 &
31.35 cm/sec with .005 moles/ 12
cm3 -'2. Max. Annulus velocity N2 is
= 27.95 cm/sec with .005 moles/ ref.
cm3 12

12 Coaxial Parabolic Entry in a N2, 716 2.586x109 1.217 28.02 5.312x109 3.409x10
Long tube. Length=5 radii. trace
Center tube max velocity = H2 &
31.35 cm/sec with .005 moles/ 12
cm3 H2. Max. Annulus velocity 82 if
=27.95 cm/sec with .005 moles/ ref.
cm3 12

13 Coaxial Entry in a tube. Length Air 530 1.013x106 1.195x10 - 3  28.85 2.126x09 4.122x10 -5

=5 radii. Center tube velocity= is
20 cm/sec with air. Annulus Ref.
velocity=10 cm/sec with temp-
erature=13000 F, composition
CO=.1, 02=.1, C02=.l, H20=.12,
N2=.58



Table 1 - Description of Computations (Continued)

Problem RW V, t N (1) N N Grid R LT Figure

T ype # At AR cm cm/sec sec NRe Eu Sl NRxNL A cm # 0 M V MK

1 .002 .25 .25 31.24(2) 1 205 990 .008 4x4 .25 1 4 1 1 0 0 0

.0015 .1 .25 31.24(2) 1 205 990 10x4 .1 4

.001 .04 .25 31.24(2) 1 205 990 25x4 .04 4

2 .025 .2 1 34294 ( 3 ) .001 34700 .714 .029 5x50 .2 50 5a,b, -1 1 0 0 0
c,d,
6,7,8

.01 .2 1 34294 .001 34700 .714 .029 5x50 .2 50 6 1 1 0 0 0

.025 .2 1 34294 .001 34700 .714 .029 5x50 .2 50 8 .5 .5 0 0 0

.025 .2 1 34294 .001 34700 .714 .029 5x50 .2 50 9 .5 .5 1 0 0

3 .00139 .05 .5 17.45 1 50 3.05x10 .029 20x5 .05 2.5 10 1 1 0 0 0
6 01.

.00417 .05 .5 17.45 .09 50 3.05x10 .318 20x5 .05 2.5 11 1 1 0 0 0

4 .00417 .05 .5 17.45 .36 50 3.05x106 .080 20x5 .05 2.5 12,13 1 1 0 0 0
6

5 Start .10 1 10 1 57.3 9.14x10 .100 10x30 .15 20 14,15, 1 1 0 0 0

.005, 16,17,

+.02 18

6 .002 .05 2 12.5 1 143 5.58x106 .160 20x20 1 2 19-23 1 1 0 1.01 0

+.01

7 .002 .05 2 17.5 1 201 2.99x106 .115 20x20 1 2 24,25. 1 1 0 1.5 0

+.01

8 .002 6
-.02 .05 2 12.5 1 143 5.58x10 .160 20x20 .05 40 26,27 1 1 0 .1 0

9 .002 6
-.02 .05 2 17.5 1 201 2.99x10 .115 20x20 .05 40 28 1 1 0 .2 0

10 .002 .05 2 5 1 57.3 3.66x10 .4 20x20 .2 10 29a,b, 1 1 0 1.01 0

.01 c,g,h,
30b

10 .002 .05 2 5 1 57.3 3.66x10 .4 20x20 .2 10 29d,e, 1 1.05 1 0

+.01 f,30a



Table 1 - Description of Computations (Continued)

Problem W V . t (1) Grid LT  Figure1%A N N N R A c #igure
Type # At AR cm ..cm/sec sec Re Eu S1 NRxNL A cm # 0 D M V MK

11 .10 .05 10.06 17.18 1 248 7.2x106  .586 2Dx20 .05 201.20 31,32, 1 1 0 1.01 1.01
33,34

12 .05 .05 10.06 17.18 1 248 7.2x10 .586 20x20 .2 50.12 35,36 1 1 0 1.01 1.01

13 .01 .05 2 12.5 1 160.6 5.43x106 .160 20x20 .2 10 37 1 1 .99 .99 .99

(1) This is based on the radius and mean velocity.

(2) Centerline velocity used only for this case. Mass mean velocity used everywhere else.

(3) This is the speed of sound. Dimensionless velocity then is Mach Number
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i+1------

Vi+ 112,j

Ui, j-1/2 A R
1---- x , AR

P , , etc Ui, j+1/2

Vi-1/2, j

i-1----A Z--

Figure 1. - A typical ICE cell showing the variable locations.

D Interior cell

Boundary cell

[ Corner boundary cell

.N

Wall

SCenterline

Figure 2. - ICE computational grid.
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ontinuity

OK? Reaction
Yes

+ gun+1 Specie
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No iYes Multi- No
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Figure 3. - Basic flow sheet for the ICE algorithm.
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o 4x4 grid
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o 25x4 grid
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.8- .6

.3

.6

.4- .15
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0 .2 .4 .6 .8 1.0
Radial position, R

Figure 4. - Startup of incompressible flow in an infinite
tube. Re = 205 at steady state.
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Figure 5. - Profile for the shock tube problem, t = 0.5.
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- At = 0. 025
--- At = 0.02

1. 8-
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+ 1.6
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k-
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Figure 6. - Pressure profiles for the shock tube problem with
two time step sizes, t = 0. 5.

0-- Number of iterations on In +1

0
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+ 1.6

1.4 -
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Figur 7. - Pressure profiles for the shock tube problem using
In in the hybrid function, t = 0.5.
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a
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Figure 8. - Effect of time centering on pressure profiles for the
shock tube problem, t = 0. 125 and 0. 5.
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1.2 -
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Figure 9. - Effect of the mass truncation error correction, 3M,
on a density profile for the shock tube problem. The calcu-
lation is time-centered, 0 = = 0. 5.
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Figure 10. - Radial distributions of the axial velocity per-
turbations for oscillatory incompressible tube flow,
/-i- RW = 3.
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27r/3-o
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Figure 11. - Radial distributions of the axial velocity per-
turbations. For oscillatory incompressible tube flow,

rFl R = 10.
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o
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Figure 12. - Radial distributions of axial velocity per-
turbations for startup of oscillatory incompressible
tube flow, V R = 5.
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Figure 13. - Cyclic radial distributions of axial velocity
perturbations for transient oscillatory incompressible
tube flow, V2r7F R = 5.
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Figure 14. - Axial velocity development at several radial positions for laminar
incompressible tube entry flow, t = 2
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Radial position, R

Figure 15. - Radial profiles of axial velocity at several
downstream positions for laminar incompressible
tube entry flow, t 2.
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Radial position, R

Figure 16. - Radial profiles of radial velocity at several
downstream positions for laminar incompressible
tube entry flow, t = 2.
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Figure 17. - Axial profiles of axial velocity during startup of laminar in-
compressible tube entry flow. Values > 1 for R 0.05; values < 1 for
R = 0. 95.
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1. 5-/ .25
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Radial position, R

Figure 18. - Radial profiles of axial velocity during startup
of laminar incompressible tube entry flow, Z = 1. 333.
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Figure 19. - Growth of instability of axial velocity for coaxial entry into a
short tube. R = 0. 025, entry velocity ratio = 2. 0.
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Figure 20. - Stabilized axial velocity for coaxial entry into a short tube
R = 0. 025, entry velocity ratio = 2. 0.
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\ Exit
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'Figure 21. - Plots of transient axial velocity for coaxial entry
into a short tube. Entry velocity ratio = 2. 0.
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Figure 21. - Concluded.
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Figure 22. - ?its of the transient pressure field for coaxial entry
into a sho r tube. Entry velocity ratio = 2. 0.
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(b) Radial profiles of radial velocities.

Figure 23. - Coaxial entry into a short tube. t = 0. 24 (steady state), entry
velocity ratio = 2. 0.
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Figure 24. - Plots of transient axial velocity for coaxial entry into a
short tube. Entry velocity ratio = 0. 05.
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(b) Radial profiles of radial velocity.

Figure 25. - Coaxial entry into a short tube. t -0. 26 (steady state), entry
velocity ratio = 0.05.
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Figure 26. - Plots of transient axial velocity for coaxial entry
into a long tube. Entrance velocity = 2. 0.
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(a) Radial profiles of axial velocity.

Figure 27. - Coaxial entry into a long tube. t = 3. 5 (steady state), entry
velocity ratio = 2. 0.
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Figure 27. - Concluded.
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(a) Radial profiles of axial velocity.

Figure 28. - Coaxial entry into a long tube. t = 2. 4 (steady state) entry
velocity ratio = 0. 05.
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(b) Radial profiles of radial velocity.

Figure 30. - Coaxial entry, center jet only; t = 2. 0 (steady state).
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Figure 31. - Coaxial parabolic entry into a long tube with diffusion and
reaction of trace species.
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Figure 32. - Comparison with Seider's no-reaction computation
Z = 12, NRe 248, NSc 0. 942.
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(c) Radial profiles of hydrogen iodide concentration.

Figure 33. - Parabolic coaxial entry into a long tube with diffusion and
reaction of trace species.
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LEGEND
ARC LABEL CONTOUR VALUE

A 0.0
B 0.3985E-04
C 0.7969E-0
D 0.1195E-03
E 0.1594E-03
F 0.1992E-03
G 0.2391E-03
H 0.2789E-03
I 0.3188E-03
J 0.3586E-03
K 0.3985E-03
L 0.3683E-03
M 0.4781E-05
N 0.5180E-05
0 :.5578E-03

1.0

.9

.8

0-

.6

S.5

.4

E

.2

.1 '

0 2 4 6 8 10 12 14 16 18 20
Dimensionless axial distance, Z

Figure 34. - Contour plot of hydrogen iodide concentration. Parabolic
coaxial entry into a tube 20 radii long.
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(a) Radial profiles of axial velocity.

0. 1200 Z
x.1

0.10

0. 8n
t-'

0

00

0.0

0 .1 .2 .3 .4 .5 .6 .7 .8 .9 1.0
Radial position, R

(b) Radial profiles of hydrogen iodide concentration.

Figure 35. - Parabolic entry into a tube 5 radii long. Diffusion and reaction
of trace species.
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LEGEND
ARC LABEL CONTOUR VALUE

A 0.0
B 0.8091E-05
C 0.1618E-04
D 0.2427E-04
E 0.3236E-04
F 0.4045E-04
G 0.4854E-04
H 0.5664E-04
I 0.6475E-04
J 0.7282E-04
K 0.8091E-04
L 0.8900E-04
M 0.9709E-04
N 0.1052E-03
0 0.113E-05

1.0

.9

.8

.6

.2

.1

0 .5 1.0 1.5 2.0 2.5 3. O0 3.5 4.0 4.5 5.0
Dimensionless axial distance, Z

Figure 36. - Contour plot of hydrogen iodide concentration. Parabolic co-
axial entry into a tube 5 radii long.
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Figure 37. - Onset of instability in temperature profiles for the CO oxidation
problem.



Appendix A

INVERSION OF THE P MATRIX

The finite difference equation for the hybrid function P is

given by equation (4-26). This equation may be solved by several

methods, one being simple relaxation. In this case the new values of

P.,j are found by using equation (4-26) and sweeping through the grid,

computing the (Q + l)th value of P from the Qth values surrounding

it. After the entire net of (Q + l)th values are computed they are

substituted in the P matrix and the process is repeated.

A variation is to control the convergence by multiplying the right

hand side of (4-26) by a factor d while also adding a term which is

'(1 - a) times the old value of P. If a = 1, the result is straight

relaxation. If 0 < a < 1, the iteration is termed underrelaxation

which converges more slowly and becomes more stable as a is made

smaller. For overrelaxation, 1 < a < 2 and convergence is hastened up

to a point, which for the problems run here was a= 1.8. At higher

values of a, convergence becomes more difficult or impossible. At

a = 2 the method is unstable.

Another method which usually accelerates convergence is the imme-

diate replacement with the new value of P. This leads to the func-

tional dependency shown in (4-27) if the grid is swept through increas-

ing i and j. Successive overrelaxation (SOR) with immediate
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substitution was used up to the tube entry flow problem. At that point

cells with lower aspect ratio were used and convergence began to slow.

This prompted examination and use of another method.

A modification of the alternating direction implicit method (ADI)

by Brian (6) was used herein. It has been used by Schwab (46) among

others and appears to offer some stability and convergence advantages

plus higher order accuracy. Briefly, the time step is split in half

and the finite difference equation is written as a three level scheme.

The equation for the first half time step is written with all the dif-

ferences in one coordinate in implicit form. For example, given the

simple equation

aF _aF aF
+ F (A-l)

at R 2  Z2
aR aZ

the first half time step can be written

* n * * *
F. - F F - 2F + F Fn  2F. . + Fn

,j i, = i+l j  ,j i-l,j + i,j+l 1, 1,j-
LAt/2 (AR) 2  (AZ) 2

(A-2)

This gives a tridiagonal set of equations which may be solved without

iteration (see any numerical analysis text). Next the equation is

written implicitly in the other coordinate, the values F being known.

** n * * * ** ** **
F. - -2F. . + F. F - 2F. + F.

1,j 1,3 F i+l,j 1,3 +  i-i,j + i,j+l ,j ,j-

At/2 (AR) 2  (AZ)2

(A-3)

Again a tridiagonal system of equations is formed and solved for the

Fi j values. Finally
1,]



.L.J

n+l F * * ** ** **S - F - 2F. + FF. - 2F. + F.
=,j 1, i L + i,j+l 1P ij- 1i

(AR) 2 (AZ)2

(A-4)

which is explicit. In practice, the equations may be subtracted from

each other to eliminate F

The ADI method was used to solve the implicit species equation. It

was also used to invert the P matrix after converting that Poisson-

type equation to a pseudo time dependent equation. This was done by

clearing the denominator in equation (4-26), moving all terms to the

right hand side, and replacing the zero on the left hand side with the

finite difference analog to 8P/9X, where "chi", X, is the pseudo-time.

The ADI method was then applied and the equations solved as though the

P variables were moving through the X domain to a steady state solu-

tion which was the set of values P.ij at n + 1. This was done using

equations (4-28a) and (4-28b). In that sense, the solution of the

equation was still iterative.

Tests with the entry problem showed that SOR converged the P

field faster than ADI if the cells were square. But the use of long

rectangular cells, corresponding to low aspect ratio, gave ADI a speed

advantage over SOR which was as high as a factor of five. Numerical

experimentation showed that the convergence rate behaved as shown in

figure 38. A few restarts varying AX and iterating over one At

established the two slopes and the optimum value of AX. The ADI

method was used for all problems with uniform and coaxial entry flow.
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3x10 2  
At RA

6 0.004 0.2
O .008 .2 (ref. case)
O .012 .2
0 .008 .1
N .008 .4

102

10

rI--

10-5 10-4 10-3

ADI scaling parameter, AX ( t2 r 2 R- ref) 2

Figure 38. - Number of iterations required to converge the pressure field versus an
ADI scaling parameter.



Appendix B

OUTLINE OF THE ALGORITHM FOR FLOWS WITH STRONG REACTION

Since the carbon monoxide problem was not completed, this appendix

briefly discusses the planned approach for dealing with the kinetics

and heat of reaction. The detailed kinetic equations for CO oxidation

are quite extensive as shown in Brokaw and Bittker (8). A mass equa-

tion for each specie or radical would be needed, including data for

the diffusion coefficients. To avoid this the computer program used in

reference (8) was run for a series of concentrations and temperatures.

The global rate equation for a second order reaction was integrated to

give an equation predicting a dimensionless concentration as a function

of a global rate and time. The results of the detailed computations

were fit to this equation to get the global rate from the slope. Fig-

ure 39 is an example of such a plot. The good fit to a straight line

indicates the global rate adequately describes CO oxidation for the

temperature and initial concentration shown. Most fits were good, and

a library of global rates was planned.

The intended sequence of computations of specie reaction was as

follows:

1) Solve the species convection and diffusion over the time sub-

step At'.

160.
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2) Compute the enthalpy of each cell based on the new composition

and old temperature.

3) Enter the reaction computation, pick a global rate for each

cell, and react at constant temperature over At".

4) Compute enthalpy based on the new composition and the change

that occured over At".

5) Compute the heat capacities Cp and CV  and calculate the

temperature change from the change in enthalpy. Calculate the energy

change.

6) Repeat steps (3), (4), and (5) over all the At" required

until step (1) must again be repeated.

This sequence contains a number of errors. One is that for a

mixture,

H = HMXM (B-l)

M

where HM  is a function of T for each specie M, the reaction causes

both a change in composition and temperature. Thus

AH = (AHMXM + HMAXM) (B-2)

and the second term has been ignored. The same problem occurs for in-

ternal.energy. For small composition changes this error may be accept-

able.

The choice of position in the algorithm for the species equation

was arbitrary. But it was felt that computing mixing, reaction, and

n+l
subsequent temperature changes just before calculating Pj was the



1.62

most appropriate position. Thus the reaction affects the new pressure,

and the pressure is the variable which couples the reaction chemistry

and fluid flow. The pressure field immediately acts on the flow in the

next time increment.
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Figure 39. - Curve fit of detail kinetic calculations to give a global rate.
Second order oxidation of carbon monoxide. T = 1600; initial mole frac-
tions: CO, 0.10; 0 2, 0.10; H20 , 0.12 12H2, 0; CO2, 0.10; N2, 0.58;
CO + 02 = C02; dCCOldt = -k"CCOC2'
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Appendix C

DESCRIPTION OF THE NUMERICAL PROGRAM

The program listed at the end of this appendix is an experimental

program written for a time sharring computer. It is not in a "produc-

tion" form, and it will require some effort to switch the program to

batch mode operation. Much room for streamlining is certainly possible

and desirable.

The program listing represents the status of the last problem at-

tempted, that of carbon monoxide oxidation. The program is scaled for

a maximum grid size of 20 x 40 and for five species. Lines of comment

within the programs help explain the purpose of the program segments

they block off.

The main program and subroutines will be identified. Next the

important variable names will be defined. Many other variables are

self evident and need not be defined. The equation symbols used in

this thesis were chosen by convention (U = axial velocity) and because

they could be identified with their variable (R = radius). The symbol

system initially employed was more cumbersome and used many Greek sym-

bols. Unfortunately the computer program uses variable words consis-

tent with the old symbol system. Some common ones are:

UR = radial velocity, V

VZ = axial velocity, U
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SQUIG = radius, R

TAU = time, t

RDL = aspect ratio, RA

SIG = density, p

A. Programs

FMIX6 - Main program which controls all flow of information, and per-

forms major calculations.

INIT - Subroutine which impresses the initial conditions of the prob-

lem, plus sets some constants.

BOUN - Subroutine which provides boundary conditions.

PROPS6 - Subroutine which specifies the properties of the fluids and

computed the reaction.

PADI - Subroutine which performs the ADI iteration of the P equa-

tion.

MASS - Subroutine which solves the species equation.

RESET - Subroutine which permits resetting the variables in the TSS

mode when all other programs are compiled with the Internal

Symbol Dictionary default, ISD = n. Can be excised in a

batch program.

RITE - Subroutine which writes output and tapes plotting data.

SIMPLE - Subroutine which calculated reaction fluxes by Simpsons Rule.

B. Equation Variables, Constants and Supporting Information

AlFB2, E Coefficients for the specie ADI.
B2, E2j
B Explicit term in radial momentum equation.
BCl-BC8 Constants in boundary conditions.
BETAK Input for 8MK coefficient.
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BETAM Input for BM  coefficient.
BETAMT Mass truncation error correction.

BETAV Input for BVR and BVZ coefficients.
BETAVR Radial momentum truncation error correction.

BETAVZ Axial momentum truncation error correction.

BKCOEF Coefficient for BMK correction.
BMCOEF Coefficient for BM  correction.
BVCOEF Coefficient for BVR and BVZ corrections.

CIIN Input specie concentrations in center tube of coax.

-*C51N
ClOUT Input specie concentrations in annulus of coax.
-C50UT
CISTOR Arrays for tape storage
-*C5STOR
CC1 Main equation coefficients.
-*CC42
CODV Curve fit coefficients for diffusion coefficients.

COK Curve fit coefficients for thermal conductivity.
COMU Curve fit coefficients for viscosity.
CONC Total concentration.
CONCI Concentration of the 5 species.
-*CONC5
CONCUP Upstream total concentration.
CONUP1 Upstream species concentrations.
-CONUP5
CONOLD Old value of continuity.
CONT New value of continuity.
COTHER Coefficients for heat capacity.
CPIN Center tube input fluid heat capacity.
CPN2 Nitrogen Cp.
CP02 Oxygen Cp.
CPOW Annulus input fluid heat capacity at constant pressure.
CPSTAR Reference heat capacity at constant pressure.
CSTAR Reference concentration.
CVN2 Nitrogen CV.
CV02 Oxygen CV.
CVSTAR Reference CV.
D Explicit terms in axial momentum equation.
DCHI Pseudo-time step AX.
DI, EI,1
FI, DJ,j ADI coefficients for P and PK'
EJ, FJ
DSQIG Radial cell dimension, AR.
DTAU Time increment, At.
DV Binary-type diffusion coefficient,
DVSTAR Reference diffusion coefficient,
ENEW n + 1 value of total energy, E.
ENG n value of total energy, E.
ENGN Normalized value of total energy.
EOLD Old value of energy.
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EULNO Euler number, NEu..
EY Normalized reference internal energy.
EYE Internal energy, I.
EYEN Normalized internal energy.
EYEOW Internal energy of annulus input flow.
EYOLD Old value of internal energy.
EYSTAR Reference internal energy, I*.
FREQ Cyclic frequency, f.
G Explicit term in P equation.
GAMIN Center tube input fluid.
GAMMY Ratio of heat capacities,
GAMOW Annulus input fluid.
I Radial cell index.
J Axial cell index.
LT Total length.
MFINIT Input mole fraction.
MLES Mixture Molecular weight minus specie K.
MLESIN MLES for the coaxial center tube input.
MLESOW MLES for the coaxial annulus input.
MMIXIN Mixture molecular weight for the coaxial center tube input.
MMIXOW Mixture molecular weight for the annulus input.
MOLFR Mole fraction, X.
MOLMIX Mixture molecular weight.
MOLWT Normalized molecular weight, M.
MSTAR Reference molecular weight, M*.
MUSTAR Reference velocosity, p*.
MWT Specie molecular weight.
NPR Prandtl number, NPr*
NRE Reynolds number, NRe.
NSC Schmidt number, NSc*
PB Pressure, P.
PBHAF Value of P after first half of ADI.iteration.
PHI Coefficient,
PR Pressure, P.
PRANIN Prandtl number for center tube coax input.
PRANNO Prandtl number.
PRANOW Prandtl number for annulus coax input.
PRSTOR oPressure to be taped.
PSI Coefficient, p.
PSTAR Reference pressure, P.
PUP Upstream pressure.

Q Velocity divergence.
RAT1 Radius ratio (i - 1)/(2i - 3).
RAT2 Radius ratio (i - 2)/(2i -3).
RAT3 Radius ratio (2i - 5)/(i - 2).
RDL Aspect ratio, RA.
REYNIN Reynolds number for center tube input.
REYNO Reynolds number.
REYNOW Reynolds number for annulus input.
RIN Radius of coax.center tube.
ROUT Radius of coax outer tube, RW.
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S Explicit terms in the species equation.
SGSTAR Reference density, p.
SGSTOR Density to be taped.
SIG Density, p.
SIGK Specie density, pK"
SIGOW Density for annulus input.
SKHAF Value of specie density after first half of ADI iteration.
SKOLD Old value of specie density.
SMITIN Schmidt number for coax center tube input.
SMITNO Schmidt number, NSc.
SMITOW Schmidt number for coax annulus input.
SOLD Old density.
SOUN Speed of sound squared, A.
STRONO Strouhal number, NS.*
T Temperature, T.
TAU Time, t.
TAUEND Time at the end of a run.
TCYC Cycle time, the reference time
TEMPIN Temperature of coax center tube input.
TEMPOW Temperature of coax annulus input.
THETA Coefficient in mass equation.
TIME Time value for taping.
TPSTOR Temperature value for taping.
TSTAR Reference temperature, T*.
UR Radial velocity, V.
UROLD Old radial velocity.
URSTOR Radial velocity for taping.
VIN Velocity for coax center.tube input.
VOUT Velocity for coax annulus input.
VREF Reference velocity.
VUP Upstream velocity.
VZ Axial velocity, U.
VZOLD Old axial velocity.
VZSTOR Axial velocity for taping.

C. Program Control Variables

CELLIN The number of the last cell within the center tube for
annular flows.

CONTHI Largest acceptable value of the error on the continuity
equation. If-exceeded,the time step is cut.

CONTLO Low value of continuity error. If the error is less than
this number for 3 consecutive times, the time step increases.

DTMAX Maximum allowable. time step.
ERROR P convergence error (also ERROR1).
ILES NR + 2.
IMAX NR + 3.
IMIN NR + 1.
IMNI NR



169

INCOMP If value = . the fluid is incompressible.
ITERS The number of iterations in that time step.
ITEST The radial oliaJ.i 'rbher denoting the P value being tested

for conver. :ie.-
ITMAX The maximum: a ]l'7e P iterations in one time cycle
JEND Largest axiai--ind'x for computing U.
JLES NL + 2.
JMAX NL + 3.
JMIN NL + 1.
JMNI NL.
JSTART Smallest axial index for computing U.
JTEST The axial cell number denoting the P value being tested

for convergence.
NANN The lowest cel l.umber within the annulus.

NBUG If value is ebug output is written.
NCONT Counter on continuity test for increasing At.
NCOUNT Loop counter on writeout test.
NFIRST If value = 0, the P array calculated in the first At is

saved.
NFIRPB If the value is 1, the previously stored P array is loaded

at initialization of the problem.
NFLU Identifies the fluid being used.
NIN Number of At' in each At for the solution of the species

equation.
NITER The P field iteration number.
NL Number of within-grid axial cells. n+l
NOUT Number of allowable outer iterations on I
NOUTER Outer iteration number.
NPRITE Counter on P iteration for writeout of P array.
NPROB The problem number.
NR Number of within-grid radial cells.
NREACT If value = 1, reaction is calculated.
NRITE If value = 1, printer output is used.
NRUN Run number.
NSAVE Sets the number of At increments between renewing restart

data storage.
NSPECY Number of species in multicomponent calculations.
NSTOP If value = 1, program stops.
NSTART If value = 1, a restart is effected by reading dataset with

last restart storage.
NT Number of time loops.
NTAPE If value = 1, output is stored on tape for later plotting.
NTLOOP Time loop counter for output.
NTRITE Test value for writeout.
NTUBE Largest cell number within the center tube of coaxial

injection.
NY Number of At" within each At' for computing reaction.

D. Listing of Computer Program

Reproduced from
best available copy.



170

CCfC'fNI/PrTAP,SGSTA,NUSTMgCLWT,NCCNP
COMMON/fO/0TAU, CYIERRORPHI THETA PSI qTAMEETV~pf:T ETAv,flCI
CC PCN/CC/PKCCEF, CC!,rI7, CC 32, CC 33CC3,CC3rtCC36 CC 37

CCV C N/SS/TAOENt,NP TTEN7APE N'S A W7NF IRPP
COI.PNTTI CC LC, PET AM T, PFTAVR , ETAV? , JSTART
CnflMNN/VdA/RAT1 ,RAT2
Co ThyyPN, VIN, vfL ,NTURE ,NA'N
CCPCN/YfCTLC,NCTAU, N' TNCL C ,NYOlLP
COMMON/AB/MIAR,TAR,CSTAR,VSAR,CC38,5FFCIf:
COPCN/AC/NRE,NPR,GNY,MOLIXClN
CCl0'CK/Ar/t'5C
COM~MON /A E /CC 2 ,CC8 ,CC S CC 16 ,N PROP, NSPECY, I'SP EC, MULT I P, NY N IN, NRCAC7T
CPCN/tF/STCK,PCLFF
COMNAHSGU,SKUP
COP)'CN/t)(/CC26, CC27
CCMiPCK/AL /tLES ,3,CAPI ',CAHCW ,TEFPCW, STZEX

7 PEYN N, PEYNOW,REYIP

COMMON/AO/EYECWvENG'CWSICCW ,TPt h
C

1 O NCtAI( T2 ,'CPUT I PE =1 F9.3 I SEC CNCS.'I)
2 FORIAAT(lH'4,T40,50HXX)C XXXX X Xx X X X x x X XXXXXfT4r),-

7 5OIvx X X x )C )C XXX X x X X /T40,-
7 50HXXX x x X x x x X X X x X XXXXX/T40',-
Z 5CHX x X XY XXX X X x x x x X/T4O,-
7 5019.x xXXXX XXX X X X X X X X XXXXX//1

5 FCRFAT(T29#READ SIZE: SI7ER=CTAU,TCYC ,PCIJT,PCLPHI ,TH4ET ,PSTl,-
7PFTA.P,TAV. PETjK, TAIENCY CCI-! .FRPR' /.TI 3.' S1ZE! =TTIMAX,NTRITE,-
ZNPRITE,NPNL,NPRCR,\L,NF CTNY,NIN,NhJTNFJPPPNRITENTAPE,N)UN')

4 FORMAT( T2, CTAU='Fl.E,' 7CYC='F6.4,' RCLT='F6.3,' PCL='F4.2,-
7 1 PFIIF'4.?,' TIETA=IF4.2,' PST=IF4o2t' PrTAM=1F4.2,t AFTAV='-
7 F4.20' PETAK='P4.2/,'T2,'TAUFNC='FR.4,' CIFI='F9.8,' EPROP=I-
Z 1PC701)

5 FCFIPAT(T2,'ITNAX='15,' NTPT'TE='13,' NPP!1'='!5,' NP='T?,' %L='12,-
7 I NPRCB=1T2,' NFLU=' 11,' NREACT=' I',' KY='T?,' NTN='1291 NCT'?,
7 T2,*NFTRPB=Ih'g NRITr:=II1,, NTAPrF=u11,' NPUN=S 13)

6 FCPPAT(T29!41, ITEQATICNS DONE. I OUIr,')
7 FOPFA'T(lHll
8 FCFIPAT(I- 925T!51
9 FCPPAT(T2,' IF TI-IS IS A RFSTA RT, TYPF TI)

10 FCPMAT(72,'QFAl IN CCI'IvFTS Ch THIS PUN, PCPMAT 2W--'
11 FOPRdAT(12OIFO

Z I
12 FORMAT(L1)
13 FCFPAT(T2,'ERROR='1PtC.4)

C
C ------- TART MAIN PRCGRBtd WITIP 1TI' CHECK--
C

SC CALL CPLTP (MLSEC.)
SFCONE=PL SE(7

C---------PEAC INPUT ANC INITIALIZE PRORLEM---.
100 NPLC=C
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C FPTY6 hTFBER PRCGRAV FCP UNSTEACY, TwC -CTWFNST0NALj MULTICOMPONENT

C TUPr FLOWS* USES THr TrF WFTHrn r-rP. tLL SPEEn FLOWS -
c lKCLUrFS VARIARLE CUTER ITERATION CADABILTTY, AUTCMATTC An.JUSTmEN7

C OF ACCEPTARLE FRRC Q IN THr PRESSURE FIFLn ITFPATICN9 MANUAL
C ACJUSTVFNT OF TIME AND .RITEOU7 STFPST7F, ANO PEPFC-RIJ.'; THE

C. FPFSSUPF FIELC ITEPATIr-N BY THE ALTERNATINr- DIPECTICN IMPLICIT

C JECHNICUE USING StPPCUTTKr PADIV - tJtSS AND MOMFNTUM COOPECTIONS IN
RECUIpES SUpRnUTINrS 1NITfi, qCUNN, PPCP14, RITE#, RESET, VASS,2, PADIO

C E PACloo INCLUDES MIXING AN[ REACTICk OF UP TO 5 SPECTFSo
c
C

IMFLICIT REAL*P(A-H*C-7)

c
CYPENSTCN PR(23,43)oSl(-(2394?),UR(23,431,VZ(2'39411,-

7 EYE(23943 1,ENG(23,43)
DIMFNSICN QOLD(23,411,6(23,43)

CIVENSICN P(23,43),C(23,43),SCLD(2?,4?)

CIFENSTCN PP(23,43),CC Ct.r)(23,43)
C.ItAFNSION SOUN(2394?),CCN7(2394?1
cIpFKsIch. C(23j43)vENFW(23,4?)
DIFENSICN AATl(23),QAT2(23),RAT3(21)
CIMFNSION BFTAMT(2?,4?),BETAVP(2A,41)tPETAV7(23943)

CIVENSICN GCLC(23,4?),FYCL0(23v43),-
7 \(ZCLD(23,4?),URCLD(23, 3),ECLC(?3,43)

CIVENSICN AT(23),CT(2?),DI(23),El(?3)tFI(23),DJ(43),FJ(4-3)tFJ(411
CltwFf\SICI\ CAMIJP(23)lcct\C(23,43),GA-MY(23,4?),T(23,431
DIVEKSICN SIGK(23,43,!)vSIC-I<UP(23,5),SKUF(23,5)
CIFENSICh SIZEX(6)vSMITLIP(23,4)vREYUP(23),SFIITOW(41,SmITIN(4)

C
RFAL*F LgLINOL '1(919NLSTAPLERLOPSCS17!FP(I I

REAL*8 tOCL!JTX(23,43),NPR(23,43),NRF(2-3,/421
PFAL*F
REAL*P PMIYINMmfXO6,PLESlt\(4),IvLFSC (41,PLES(23,43,4)
REAL*l RCLFUP(23t5)v?'PIIX()P(231,MLF:SI.IP(23,4)

C
INTECER CAYITE-RS(40OC1,SIZFI(151,SPECTF(6)

C
LCGICAL ANS

C
NAFELIST/.;I7E/SIZFRSIZEI

c
COMMONIAAI TWNI , TI'TNl LFS I WAX 9JPNI JNT N JLFS JmAX
CCFYCt\/PP/FYOLnvV70LCUROLDEOLD
CCl'fCf\/CC/FRSIG qUR V2 EYE Ft\C-
COMMON/rC/BC4,PRC6,prRRSITESTIJTFSTNSTCPN( CUNTIFPRCRI

CCPlJCK/EE/PpPTIETAU
COVVfh/FF/CCL0,G

COMMON/CG /PUP PUPPA X 9 SIGUP* SUPmtx rSCTrzVFl-UPVUPMAYR0L,':RFC

COVReNlFF/PDtSCLCvFUF2,SUP2

COMMON/JJ/A[,BIIBT2,CTDltE-19FTAjgjlp.j;?,rjr)jEJIFJCC41,,rr4?
CCIwPCNIKKISCUN, CCNT
CCROCN/LL/EYSTAPPC-UTLTEULNCPr-Yt,,CSTPCN(7,',VITNC#PR,6NN(I.,VPFF
CCf4VCK/PP0/C, FNFIA
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NSTART=C
N'F IF FP=O
AN 5=,F AL S F
WRITE ((fIt)
PEAC (69,121 ANS
IF (.NCT9ANSI GC TV~ 1C3
N ST ART= I

101 IF (INSTARToECo0) C~C TE 103
102 READ (MC P3,PR V7,URSCUN,ENr,,EYF ,SIG,rTAU,TCYC,PC)T,RrLP-'1,

Z THETA, PSI, BETAM, 8ET4V,8ETAI,FtFTAK,T DCtR1 rPtZR,TAI,TAIIENC,VLJP,VPRFT,--
Z FUP,FUP2,SICLP,EYVJN,VCLrr,CELLU.,PIN,FRtCP,JSTART, ITMAX,NTR!TF:,-
Z NPRIIE,NR ,NL,NPROIR,NFLU,1TNCC'P,NCUTNRUN,TN,NTUBE,NANNNSAVF,-
2 NRITF,NTAFF,NTLO',NCOUNT,NREACT,NYNINNSPFCY,(ITEP 5() 1,1=19NNI

PAUSE 'RESTART, CHAN'GES CK CTtIJ, DCH~I, CR NSAVE?'
C-0 TO 110

103 % R!TE ( 6 9973
READ (5,SIZE)

IC4 bR ITE (69941 STZFR
~RITE (6995) SIZEI
FALSE 'ALL CKAY?'

105 CTAU=SIZER(l)
TCYC=SI12 R (2)
RCUI=SI ZEP(3)
RCL=S!Z ER (L)
FI41=SIZER (5)
THETA=SI ZFR(6)
FSI=SIZER (7)
EETAP=S IZER(8)
BETA V=SIZFR (g)
EETAK=S IZER~iD))
TAt EKC=S1? ER (11
ECII=SI7ER( 12)
ERPCR=S IZFR (1.3)

106 TTIJAX=SIZE1(l)
NTRITE=SUZFT( 2)
NPP ITE=S IZE 1(3)
NR=SIZEI (41
NL=SIZEI(51l
NPFCEP=S!ZE! (6)
NFLU=SI ZEI (7)
NREACT=SIZE!( P.)
tY=SIZEI (9)
KN=SI ZFI ( 10)
NCUT=SIZEI( 11)
NFIRPP=SI2FI(I2 )
NRIIE=SI ZE! (13)
NTAPE=SIZE 14)
NRUK=SIZE!(15)

C --- SET 1691TINC INCICES ----

ILFS=It'AY-1
IMJN=JMAYl-2

JtPAX=NL+3
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JLES=J Vis X- I

C ----SET PTSC. CONSTNTS --
120 CSCIC.=1./?hR

OSCI 5C=CSCJr*D5CIG
121 PCLSC=PCL*PCL

FR EC= I. / TCYC
CON Wl=2. 50-3
CCf\TI-C=5 C3C-4

124 IF (KCLToECo 0 ) NCCUT=l
EMCOIEF=Co
I F ( PET 6%C-T alo) 9mCflEF=FFTAM-L1.
EVCCEFSC.
IF (PFTA'6,C-10 1.) RVCCEF=BFTAV-1Q
EKCCEF=O
IF (EE1bI(GTo.1 PKCCFF=PETtl(-1.
IF (NSTART.EQ.11 f,03 TC 126

125~ IT=0

NFIR 51=1
NTLCCP=O
KCthlN=C
NSA F=l
NSFECVY I
IN CC!OPC
TAL=C.
tRESET=O

1250 CC, 1251 =1 t400
IF ( ITrP.S( I).EQ.C) GC IC 126
ITEPS(I =0

1251 CCKWTULE
126 N VTER=0

rNS41'E=O
!FRCF=C

127 LT=CSQIG*R0UT/RnL*NL
C --- GET FLUID PROPERTIES --

13C CALL FREF
IF (NSTAR'.E~o01 GC TC 140
IF (NSPFCY.ECol) CC rc 132
READ (IN) t'RE,tNF'A YqtCLPTX,CONC,STCK,IJCLFRiMLES ,GAM~IN,-

7 CAfCWTEP'PCW, SIZE XMMIXINMI XOW,MLE SIN , RLCW,MOLFUP mfJIXUP,-
7 PLS~SIT RPPPTCEYN 1N,RFYNO0A,REYUD),SIGKUP,SKUP,-
Z t'SC 1E ECh,EKCOWvSIGC ,lPC

132 REWINC 1C
CC IC 141

C---------TINTIAL17F--
140 CALL INIT
141 CTIJAX =.S* SC STAR *PCUT* FCUT*.SO ISO/( 2o*MUSTA R*TCYC* (1. +RrDL 0)1

C---------C4LCLLATF DIMEPNSICKLESS GPCUPS AKE CC1O CCEFFICIFNTS --
155 REYNC=S(SThR*RfOUT*VREFlWUSTAR

ELLhC=PSRt/(SSTA*VPEF*VPEF)
STR0N0=ROL'T/( VREF*'ICYC)
S1OITNC=PUSTAR9/(SC-STAR*CVSTAR I
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1 FO IF (NSTAP T.FO* 11 CC TC 156
IF (IKCCM?FQ*OI) CO TC 156
IF (rHI.C.100.qQoNCTI-ETAoGT.O.99) C-C TC IS6

1551 PHI 1.
THETA=1o
NRE SET=1

CC2=.5*PCL
CC? =RD L/16.
CC4=2./CSQIG
CC5=2.*PCL
CCf=( 2. *THETA*01 L* CTAU I/(CSC ISC*STRCKC*'TPCN)
CC7=EULNO*( 10 -PHT!
CCS=.5*PCLSC
CCq=D1IAL/(CSQIG*STRCNC)
CC 10 .25*'P CL *CCS

157 CC11=2.*CCS
CC1I2=EULNC* PHI
CC12=RCL*CC12
CC14=PCL*CC7
CC 15=. 25 /CSOIG
CC16= CC15 PCL
CC17=C SC IC/I'S
CClI F=STRONC /DTAL
CC19=TI-ETh/CS0IG

158 CC2C=(1.-TF-ETA)/CSOIC
CC21=,0C*c
CC22=EUJLNC'*CC9
CC23=CC2l /DSCIG
CC24=CC2'*CC2
CC25=4.*PCL

CC27=CC26*RDLSO
CC28=.75*QCC(
CC2 =CCS/64.
CC 0= CC 2 * RDL
CC31=CC29*PCL

CC?3=CC3 2/CC2
CC?4=CC33 4CC33
CC35=(l,-PST) /D)SQIG
CC36= ./ CCSC TC*ESQTG)
CC? 7= CC3 6*C C8
CCE=~SG'S1AP*TCYC*DTAL/ (NY*NIN)

159 CC40=CC6*CC12
CC41=2./CC4T
CC42=.5*CC40*RO)LSO
Pl1=-CC4O-CC4.
P12=BI1-4,*CC41
AJ=CC'i2
PJ1=-2.*CC42-CC41
FkJ2=B Jl-4. *CC4 I
CJ=CC't2
rPHI=S!ZER(5)
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TIETA=SIZER(6)
C ----- CALCIJLTE RAOTUS CCEFFICIFNTS-----

160 DO 164 T=2,ILFS
161 vI=I

XIX!=XI4XT
162 PAll (T)=( f-l) /(XTXI-?e)

PAT2( I)=(XI-2.)/(XIX-3.
AI(I)=CC40*PAT2(I)
CI(I =CC4C*RATI(T)
IF (IoECo2) GO TO 164

163 PAT3(T)=(XIXI-5)/(XI-2o )
164 CONTINLE

C ----- INITIALIZE------
170 CALL PCUI

C ----- READ IN COffENTS-----
180 WPITE (69,10)

REAC (6S911)
C ----- PEAD IN INITIAL Fe FIELD IF CESIREC-----

185 IF (NSTART o EQol) GO TO 190
IF (MFIRFB.ECO0) GC TC 190

le6 PEAC (14) PR
RE,'INC 14

C ----- SET CLC VALUES = IrITIPL VALUES-----
190 CO 16 J=1,JMAX

ZOLC 1 ,J=VZ ( 1,J)
LRCLD(ItA ,J)=UB(IMAX,J)

191 CO 195 I=2,ILES
192 VZCLD(I,J)=V7(TIJ)

,,RC , I Jl UR(IJ)
193 ECLC(I,J)=ENG(TJ)

FYCLC(I J)=FYF(IIJ)
14 SCLD(I,J)=IG(I ,J)
195 CCNTINUE
196 CCTIINUE

IF (INCC P.ECo1 JFC=JNIN
IF (INCCMPEQ.0) JENC=JLES

197 IF (NSTAPRToEQ0) GC TC 198
NSTART=(
IF (KTAFEEQO0) GO TO 200
EtCFILE 12
EACKSPACE 1.2
CC TC 200

19g8 RITE (6,2)
hRITE (611)l

199 CALL RITE
C

C ----- ENTER MAIN TIE LCCF-----
C

2CC IAL=TA+DITAU
NTLOOP=NTOOP+ 1
tCCLhT=CCUKNT+I
NCLTER=C
IF (NPROPF 0.1) GC TC 2C1
CALL FPCPC
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IF (NSPECY*CTo1 CALL PCU~r

CALL PCUNVl
2CI IF (NITER.EC.0) C~C TIC rl

C-------CCULATE TCTAL ?,ASS ERPR CCRPECTIN--
202 IF (eETABF'.Co0 .I CC T(' 210
2C3 00 2Cq J=2,JtI'K

2C4 CC' 208 I=20,ITN
I P=I+ 1
C IFFU=CC2l*( UR( TPoJ )-IY (19J) 1

CIFFV=CC10*(VZ( IJF)-VZ (IJ I1

205 IF (BETAlw.(T. la ) GO TO ?06
CTFFU=PETAMi*DIFFU
Cl FFV=BETAP'*CIFFV
GC TC 2CI

206 CTFFU=2PJCCEF*CAES(.lFFL)
CIFFVEPPCCEF*CAPS (DTFFV I

207 !BFTAIMT(I J)=DIFFU*(R1T()*-IC-(1Pj)4RAT2(T)*S1G(!1,vJ)-
2 -SIOC I,J 1)+nIFFV*(STG( I,JP 1+51G( I,JI-l)-2.*SIG(I ,J) I

208 CCIYTIKLIE
2CS CONTINUE

C --- CALCULATE OLO. PART OF CONTINUITY--
21C CO 215 J=2,JHI\

JP=J+1
JV= J-l1

211 CC 214 1 =2 .1 IN
IP = 14 1
IM=I-1

212 S=SCLD(I tJi
SIP=SOLC( IPJl
SlId=SCLC( If',J )
!JP=SCLD(I .JP)
SJM=SOLD( I , Jm )

213 CCNCLC( I,J )=-(CIl*S+CC2*(RAT( )*( ST1z*UPfLn( IPJl-RAT2(i '(rl

7 +SIPI*LPCLO(T,J)4CC2*( (SJp+S)*V7OLO:(IJP)(S+SJml*VZJLD( I,JM))-

7 -CClE*BF7AWdT(TJ)
214 CCN~TINUF
215 CNITH'LE

C --- CALCULATE B E 0
220 CC 230 J=2,JLES

JP=J+1

221 CC 229 T=2,ILES
[P=I+1
lM= I- I
Rl =PAT 1( I
P2=PA72(T I

C 222 UU ( I ,J )
LIP=UR(IFgJl

C Llt'=UR(It',J)
C UJF=UR(IJPI
C LJPM=UP(I,JP~)
C U LIJP'=UP II F ,J0)
C 223 V=V Z 11,J
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c %1P=V.Z(TP,Jl
c v IM=VZ( UI 
C %JP=VZ(IIJFI
C %Jtl=%d7(T ,jm)
c VWMJP=VZ( U'VJP)
C 224 S=SIC(79J)
C Sl P=5S, IF 9j)
C SIM-S IC N DOJ)
C SJP=STC(T,JFI
C Jll=SIG (I JP')
C S1PJMA=SIG(TP,JM.)
C S1FJF=S IG ( If/,JP )
C SI MJJ?=S IG (TfM , JR)

225 IF (BETAV.FQo.) CC TC 226
IF (19ECo2) GC TE 2250
XI 2=1-2
VSUp'=VJP4V+V1mjp+Vl

E IF FU Z= (CC3 1 *S I *VSUM VVS Um + .C156 2 5V SLm*( 5J D+ '-', JP-S Jto- S IMJ M I-
7 +o.12 5*S I *(V JP +V IPJ F -V- VIM) )REL
2250 )1=+-

USUM=U IP4U4UIPJW+UJM
SJ=S+SJV
DIFRC2*JLUJLU+3.65UUI(I+IJSf-IJI

7 4, 0C-2 5 SJ *(VI P+U IPJ M- U JM ) +o0 62 5*SJ * U S U t'X3
C I FFV Z KC 3 O*S J*v +. 125 * (S-SJ Mf*RCL *V

2251 IF (BETAV*Gl 1. ) GC TO 225?
1 F FUP=PFTftV*C IFFUP
CI FFU Z =PETA% V* 01FF U 7
D IF F %;R = BE I.V* 0 1 FF VP
C IFFVZ=PETAV*C FF-VZ
CC TO 226C

2252 DIFFUR=RVCPEF*DAB S(t)IFFUP)
C IF FU Z= PV C FF 1t P S ( CIF FJZ )
UIFFVP=~EVCCFF*CABS(E1FFVP)
C I F F Z = PVCCOEF *r) RS ( 01 FF VZ)

2260 8ETtVR( IJI=DIFFOR*(UIP+UTM-U-U)+DIFFUZ*(UJP+UJM-U -U)

226 PROr=( S45CJM+S I M*STMJM*( UUjl)*(V+V W I

IF (IsECo2) GO TC 228
227 B(I ,J)=.5*U'*(P(1)*SI)*IPUl-S*UP/P)+CC3*(PP.0D-(SJP+SIMJP+S-

7 4SIM)*(UJP4U)*(\VJP+VIMJP)I+OCC*((Q( IJ)-CII?~,J))+PDLSQ*(UIJP4UIJM-
7 -UU-C*VPVNPVVM)(R(,)Nt(MJ)BEARIi

228 0(1 ,J)=.125*(R?*FPOO)-FI*(SPS PV f)(UPUPm*VPV)
7 4POL*V*(SJM*VJM5S*VJP)+CC4*(RDL*(0(1J)OC(I,JM))+CC5*(R*(U-UJMI-
7 -P*UFUPM)2*P*I42*I-)/NEIJ+P(,M)
7 +BETAVZ(I ,J)

229 CCNTINUE
230 CONTINUE
221 S(IMIN,JLFS)=0.

f(ILES,JLFS)=O.
E(TLES,JP'U')0.
E( ILFS,JLFS hO.
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CALL PRCPA
232 IF (KCLTEP 0.NE.01 Gr TC 270

C ---- 7ALCULATE air G --
240 CC .260 J=29JMTN

JP=J+ I

241 ED 259 1=2,10'Tt,
I P=I+1
IpV=I-i

242 IF (IN~CC1FaEQo1) GOl TC 255

244 SONIi=7&MYTJ)FN~)1J/UN
255 P1=PATI ( I

P2=PAT2( II
256 P=PR(1, J I

S=S IC( IqJ

SIM=SI-( IFdJ)

SJF=S I-(I,JP)
SJtVsSIG( I,Jf')

257 C-OLl( I,J)=PISOLN(! ,J)+CC6*(CC7*(Rl*PR(IP,J)+P2*,PR( It,J)-P+'C8-

7 *(RIJP IlJm--))P*(,J) 8l*P(IP,J)+CC2*(D(T,J)-

7 -0 1 , JP) ) +CC9* (R?*( S4SIV *UP ( IJIRI * ( SIP+S)*UR IPJ )+CC 2 -

258 C(I ,J)=CCLC( I,J)
2%q CC?'TItLE
260 CCONTIINUE

IF (INCCY'P.EC~ll CC TC 263

261 DO 262 1=2,IIN
SOUN(I,1)CGAMMY(I,1)*FYLlhI,1)/EULN'C
SCUI\II,JLES1=CAtdPY(I,JLES)*EYOLC(I,JLFS)/r:LNl

262 CONTINUE
263 IF (NCUToEC.1) GO TO ?Co

r. -- CAICLIATF ICTAL C --

270 CO 274 J=2,JMIN
271 CC 273 1=2,I~lt,
272 G(I ,J)=GCLf(,J)-SCLC(I,J)*(1o-EYE(IJ)/EYflL0)(1J)I
27' CONTINUE
274 CCI'TIUE

C --- PRESSLRE I1FRbTIC --
300 CALL FAD!
301 IF (NST0PoECe0) CC TC 390
302 IF (NFIRSTEC.0) GC TC 370

WRITE (14) PB
REWINDC 14
NFIR ST=C

C --- WRITFCUT P, STOP FCR NO PRESSURE CCNViFPGENCE--
37C %PPIIE (65,61 NITER
371 NRLC=l
377 CALL RITEE

ITEPS(NNN )=NTT;.P
378 WRITE (6,7)

375 CALL CPLTIM~ (MISEC)
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SEC bC=LSEC
SEC=(SFCT%0-SFCCE)/1CCC,
WRITE (6909) SEC

TCF
3SC NNN=NNN+1

ITERS(NNN)=NITEP
C ----- CALCLLATE CENSITY-----

400 CO 404 J=2,JMIN
401 CO 403 I=2,TINK
402 SIG(I,J)=(PeI ,J)-FR(I,J))/SCUN(I,J)+SCLC(T,J)*(2o-Ev i,.-

Z /EYOLD(I,J))
403 CCIIhNUE
4C4 CONTINUE
410 CALL BCUNP

C ----- CALCULATE VELCCITIFS-----
450 DC 456 J=2,JEND

Jp=J-1
451 CC 455 I=2,IMIN

IM=I-1
IF (J o LToJSTART) GO TO 453

452 VZ(I,J)=((SCLO(IJ)+SCLC(I,JP))*VZOLCI,Ji+CC11*(CC13*(PB(I,JM)-
Z -PB( IJ) )tCC14*( PR (I ,JV)-PP(I ,J I l+ (I, J I l/ (S IG(I,JI4STG( I J I

453 IF (I.ECo2) GO TO 455
IF (JoEC°JLFS) CC TC 455

454 LP( I,J)=((SOLO( I,J)+SCLO(I ,J))*URCLC(I,J)+CCI]*(CC12*(PP
( I ,J)-

7 -PE(IJi) 4CC7*(PR(INJ)-PR(1,J) )+ (IJ))1/(SIG( I,J)+SIG(I ,Ji)
455 COCTThUE
456 CONTINUE
460 CALL eCUNC

C ----- STCRF CL C -----
500 IF (NBUCoEO.0 GC TC c10

IF (NOUTERPNE0 O0 GC TC 510
IF (rCD(NCCLNT,hTRITE)IKF,0) CO TC 51'

501 CC 505 J=1 9 JLES
502 CC 504 I=29ILES
50C? CCLD(I J)=C(I ,J
504 CChTTNUE
505 CONTINUE

C ----- CALCULATE NEW .-----
510 CC 514 J=1,JLES

JF=J+1
511 CO 513 I=2,TLES
512 ( I J)=CC1* ( (RAT I( )UR(I,J)-RAT2(I )*UR(I J)+CC2*(VZ (I J P)-

? -VZ(I J)))
!13 CONTINUE
514 CCNTINUE

C(TLFS,1 )=C
O(ILES,JLESl=0.

515 IF (NITER.ECO) CC TC 202
C -----CALCLLATF CCNTINUTTY TICLUCING THE NhW PART-----

550 CO 554 J=2,JMIN

JP=J+1
J5=J-1

551 CC 553 I=2,1MIN
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IP=I+l
S=SIC( ,Jl

Z - AIT2(1)*(S+STG(I-Igj))*UR(I,J)4CC2*((STC(!,JPI+SI*V?(I,JP)-(S-
Z 4SICU,9JM) )*VZ(!,J)))

553 CONTINUE
55 CONTINUE

C --- TEST CCNT FOR FRRCR ACJUSTENT --
560 ?CCNT=C
561 CO !(-f J=2,JMIN
562 CC 565 1=2,IMIN
563 CkBF=CAeS(CCNT(,J)l

IF (CABSeC-T.CONTHI3) CC TC 567
IF (CABS*CT*CONTLO) KNCCT=l

565 CCK~TTILE
566 CONTINUE

GC TC 568
C---------REDLCE PBAP ERPCF TEST --

567 ERROR=.S*ERROR

URPITE (( ;91?) EPRCP
CO TC 30C

568 IF (INCCVPFFCo1) CC Tt 632
C ------ CALCLLtATF ENFPGY-----

600 CC 615 J=29JMIN
JFP=J+2
JP=J+ 1
JNu=J-1

601 CO 614 1=2,TPIt
I P=I+l
I fS I- I

6C2 Pl=R.ATI (I I
R2=RAT2( I)

C 603 U=UR(IJ)
C CIPP=UR(142,JI
.C LIP=UR(IC,J)

C UI$=UR( IMJ )
C LJF=UP(ItJFJ
C LJM=UR(IJFI
C UIFJP=UR(IP,JP)
C UIPJUR(IP,JP)
C EC4 V=VZ( I J)
C VIP=VZ(IptJ)
C 'IN=VZ(Im,JI
C VJPF=VZ(I *JPPI
C VJP=VZ( IfJPI

C VWPJP=Z(IP,J')
C VIMJP=Vl(ImgJP)
C 605 LU=LIP*U
C V=J*
C 606 S=SIC(I,Jl
C E=ENC(I,J)
C CIJ;:Q(I,J)
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PPAR=PP( IJ Je2
C 6C7 C1=CIJ+C(lFJ)
C 02=OIJ+O( !",J)
C C3=CIJ+C(1,JP)
C 04 =CIJ+C( I JM)

6CP FIR ST=SOLFD(I,J)*ECjO(1 ,J)+CC21* tR2*(S+Slr(!MtJ)I*(E+FC( P~J))*UIQl-

7 *(54S1C.(IPJ))*(E+FNC(IP,j))*UIP+CC2*((S4SIT-(.,Jm))*(E+ENG(IvJM,)l

6019 SECONC=CC22*(R2*(PRAR+FE(IM.J))*U-R1*(pPAjP4PB(TP,J) )*U1P4-CC2-

Z *(Pt+ETJl~- FPD~tp)VP)

6 10 THIpD=CC23*(Rl*(-C1*U1F+4.*Ul*(U1+?,vJt-j)+2,*(VTPJP*V!P-VV)-
Z +CC2*(VIPJP+VjD+VIPV)UIPJP-U!PJMf+2*(2*U4*U*(UTPUIl-?--
Z *(VVIMFVM)C? VPVIOPVVT *(JPUM )+CC 75*(G-,MMY( I ,Jl-

7 +1.i/NPR(1 ,J)*(R1*(EYF(I~%J)-.VE(TJ) )-R2*(EYF(I,jI)-EYE(P',J)flV-
7 /NPE( I,Ji

611 F0UPTtCC24*(-C3*UF+CC5*((IPJP*(uJF-UU 42.*VJP*(Vi(T,9JPP )V)
z +oS*(U!PJP+UJP+CI+U)*fVTPJPVIMJP)+04*V-C5*((UIJ-UTPJM~*UJ-M-
7 *2.*V*(VJF-VJ I )-,54(UIP4U+UIPJM+UJV*(VP-VIM)+CC25*(GAMMVY( 3J)-

7 +1. )/I\PP(I J)*(EYF( 1,JF)+C-YE(I,JMIb2 0 *EYE( TJf)INPE(I1,J)

612 ENWTJ=FRISC.K+HP+CRHI
613 EYE(IJENEW( IJ)-.125*UUtIP+U)**?+(VJP4V)**2)
6514 CC?\TTNLP
615 CONTINUE

C --- PESTCPE CURRENT EN~ERGY ARRAY --
62C DC 623 J=2,JM!N
621 CO 622 I=2,IMIN

ENGUIJ) =ENEW (T,J)
f22 CCl\TINUE
623 CCINTIIE

C----------- ENERG-Y PCS & INCREASE ERROR TEST-~

630 CAtL BCUrKC
631 tCUTEP=NfLU*TER4I

IF (NOlUTERaCFE0PCtT) GC TO 632
GO TO 27C

632 IF (KCChToFC*0) GO To 633
IKSAPE=C
CO TO 635

633 lhSAENSPME+l
IF (KSANE.t,T.5) GC TE 635

634 ERRfR=ERROR/oq
I SAIVE~o
'APYIE (65v13) FPRCR

635 IF (NFIRSToEQ*01 G(- TC 7CC
636 ifRITE (14) PFk

RF 141ND 14
N F IRST= 0

c --- UPCATE FNC-CF-CVCLE VALUES--

ICO 00 706 J=19JP.AX
VZCLV(19J)=VZ(1,J)
UPCLC( I VAX iJ)=U R (IMAX , J

7 C,1 DC 7C 1=2,ILFS
702 VZCLC( T,J I=VZ( T,J)

IF (J*ECoJMPX) C-C TV 705
LROLD( I v) =UR( I v J)
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703 ECLC(I,JV=ENG(I,J)
EYCLD(I JI=EYE(IJ)

704 SCLC(IJI=SIG(IJ)
705 CCTINKUE
7C6 CCNTINUE

C----------CALC COMPONENT FLUY AN) REACTICN-----

709 IF (NSPECYoTol ) CALL MASS
CALL PRCPC

CALL PCUNF

C ----- CALCULATE NEw PRESSUlQE-----

710 IF (INCOMPoEOoCI) C ITC 715

711 CC 714 J=2,JMIN
712 CO 713 I=2,PI N

PR ( J)=PP(IvJ)

713 CCNTINUE

714 CCTINUE
GO TO 71

.

715 CC 718 J=2,JMIN

716 00 717 I=2,ITIN
PR( I,J)=GAMMY(I,J)*SIG(I,J)*EYE(I,J)/EULC-.o

717 CCTIMUE

718 CCNTTNUE

C ----- PR BC -----

719 CALL BCUNE

C ----- RPIT CUTPLT E STCPE FCR PLOTS-----
75' IF (POO(NCCLNT,NTRITE).NE.0) GC TC 800

IF(fRITEeECO.h?'C.,NTAFE.EC.0) GO TO 00C

KT=KT+1
760 CALL RITEP

NSAVE=I
NC C L' T=C

C ----- ACJLSTMENT OF TIPE STEP FRCM TEPPINK -----

800 CALL RESET

IF (?PESET 0EQ.0) CC TC 8C1

8000 IF (NTLOOP.LT.3) Gn TO 801

NPRES ET=0

8CC1 CC6=THETA*CC6
CC7=EULC*(1.-PHI )
CC12=EULNC*PHI
CC 13=PL*CC12

CC4=PRCLCC7
CC19=THETA/1SCT-
CC2C=(h-IHETA) /CSOTG

8002 IF (NCTAUECO0) GO TO FC4

eC1 IF (NOTA UECoO) CC TC. 900
NDTAU=C

802 PATCT=CTAL/CTnLr
EC3 CC6=CC6*RATOT*RATCT

CCS=CCR*P.A TnT

CC10=CC10,ATCT
CC11=CC11*ATrcT
CC18=CC18/RATDT
CC21=CC21R4ATCT
CC22=CC22*RATOT
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CC2 3= CC23 * PLCT
CC24=~CCI4*PATCT
CC26=CC?6*RATDTNITK/INCLD
CC27=CC26*RflLSC
CC 2F=CC2e*9ATDT
CC 2q=CC 2S;*R TOT
CC3O=CC30*RMTCT
CC 31=CC3 1*PATOT
CC32=CC22/PATCT*N IN/N INOLD
CC!3=CC32ICC2
CC3A=CC33+CC33
CC3P=CC'8PATCT4N !NOLr/NIN*NYDLD/Nv

6C4 CC4C=CC6*CC12

CC42= ,5*CC140*P CLSO
EC5 Pll=-CC4C-CC41

FT 2=P 11-4. *CC 41
tJ=CC42
8JI=-2.*CC4?-CC41
eJ2=PJI-4.*CC41
CJ=CC42

806 DO ECF 1=2,TLES
E07 AI(I)=CC40*9AT2(I1

c --- CI(I)=CC40*PAT DATA AND EXIT WITH FIN'AL WRITEOUT--
90IF (VCC(NTLCOPNSAVE).FhEa0) CO *TO 902

SC1 IPITE (1C0 P8,P,V7,UP,SCUN,ENG,EYE,SlC-,tTbUTCYC,RCUTRD.LPH, -

Z THeETA iPSI, BETAMi,BET AV9 PETAI , BETAK , T DCHI iERRCP TbU,TAUENCtVL'PvVRFF-
7 PUPPUP2,SIGUFEYVIN,VCUT,CFLL IN,RIN,FRACPJSTAP7T TMAXNTRTT~,-
7 INPRI TE ,NR ,NL NPRfl8,NFLUI, TCCNP ,NCLTNRU!',NT , NNNTULE, tAN NShVF, -

Z NPITE,lNTAPE,NTLOfP,NCOUNT,NREACT,NV,NIN,N PECY,(ITEPS(I) ,I=1, 'NIN)
IF (NSPECY.EQ.1 ) r~r TC 9010
WRITE ( IC) KIRE,NPR Gb~f'fCL~TX,.NC,SIGV*V0LFR, WLES,GAMIN, -

Z GAMCW,TEWFCW,S IZEX,MNMIXIN,MMIXlW, MLESTt' MLcS0w,?M0LFUP,MtdI XUP,-
7 YLF5LP,SP.'!TUP ,CAtdUP,SPI TCW, PEYNIN,PrYNCW,RrYUP, SICKUP,SKUP,-
7 N.SC9YEOI ,ENGOWSI(CimvFCW
9010 lPEIINC 10

ENDFILE 6
eACKSPACE 6
IF (IKTIPEeEC*O) GC TC S02
ENDFILE 12
PACKSPACE 12
lVSAVE=2000

S C2 TTFST=1.1*(TAUEMrl-TAU)
IF (TTEST9.CTo0TAU) CC IC 20C

903 %mPITE (6,7)
1ARITF (6,8) (1TERS( ) =?INPN)

904 CALL CPUTIM(MLSEC)
SFC'TWO=FLSEC
SEC=(SECTV C-SECChF) #CCC.
WRITE (64;,1) SEC

C STCF
C END
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C NIT12 - UTEPER SUFRCU)!i\E Ir'IT FOR FMiIX5 - PPESUMFS A TURE WITH

C COAXIAL VNR~ CCMPRFS12tF FLUID. THE CENT ER TIJRE

C CCMFCS T TON IS J! ~t* --THE ANNULAR COMPOSITION OF SPECIES CO,

C C2 i CC2 9 P2(9 IS V' EAD IN, AS IS THE TEMPERATURE flF THE

C ANNULAR STREAM. INPUT VcLCCITES, CCYPCSITIONS, ANDJ

C TEMPERATURES ARE i-ELD CONSTANT. OUTPUT PRFSSUPE IS HELfl

C CCNSIANT, HENCE FRCPLFw IS VALID ONLY FOR SUBSONIC FLOWS-

C FLUID IS CCNFINE) BY IMPERMEABLE KC-SLIP WALLS.

C

SUFROLTINF INIT
C

ItPI4IC1 PEAL*8(A-HC--Z)

CIPENSICNPF2,3~343,I(34)U(34)Z233,
z EYE(239431 ENG(2?,43).*

EIfJFNSICN cCL )( 23, 4 3) 3( 4 3)
CIVEt'SICK 2(23,43),C(23,-43), SO)LD(2-3,43),SKUP( 23,5)

0 1 4F NST C K SC UN ( 2 3 43?)7C C NT (23 t4 3)
CIPENSICK 0(23,43), ENE i23,43I, SMITTN(4J ,REYUP(23)

CIMENSICh G CLD( 2 1,43 ) ,FY CL C (23 q4 3 ) VZLCD(23, 41) vUROL D 23,3)FOLl( 
2 '4,4 3)

DIMENSION BFTAMT(23,43),BETAVR(23,43),PETAVZ(23,43)
EIVENSIC\ SIGK(23q43, ),T( 23,43)
CIMENSICh CCNCI(23,43) ,CCt\C2(23,43),COC3(23,4-3),CONC4(23,43),-

z CONC( 23 943 )
CIVENSICK SIGKfJF(23,E ISNITUP(23,4),CAM'P(2?3),SMITOW(4) ,SYTNIT(5)

C
REAL*P tVSTAR FSTAQ t T 9 CLWT ( 5 ,MOLMI X(2? 43) , ST 7EV(3 I, S ZrX (6)

PEAL*8 \SC(23,43,4)1 f :R(23,43,5),MOLFU P(235),M-ES( 23,43,4)
PEAL*P NRE (23 4'-JlNPP-YZ3 43 ),GANVY(23 431 CCKC( 23,4 3 1

REAL*P mpIy!vm !I(41 4E-fi )IF N (

REtL*8 tMIXUP(?3 IM1U(23, 4
C

INTECEP SPECTF(f)
C

NAMELIST/SIZES/SIZ'V
NANL I ST/S I EC/S 17EX

C
COMNA/IN R ES9 A JtN N LSJA
COfJCNP/FYOLDgvznLCURnLD9 EOD

CCF'C/CC/F,lIC,UR,\iZ,EYE,E'C-
COMMON/CD/BkC4 ,BC6 , PR!S9YTF STJTEST vNSTCPNCCUNT,ERRQRl
CCMCN/ EE/PFBPT I 1FTA8U
COCt'CN/FF/CCLC,G
COtJONCG/PLP,PUPAX,SCUPSUFMAX,O)SIG, ELUPVUPMjBX,RDL,Fr~C

COVMCN/V-F/ECqS(C,PUF2vSUP2
CC~vCN/K/SCI\CCI\T
CfMPfN/LL/FYSTAR,RO UT,LT,EULtKC,REYNC,STRCNC,SM'1TN0oRbNNO-,VREF
CCN/ 'P'/c VENEW

COft OK/QC/RKCOF,CC5 CC 17,CC32 9CC 3? CC?4 CC35 CC36 CC37
CCO0CNITT/CCLDEETAT,EETAVRPETAVZ,JSTART
CCOCN/PVI,VLONTUENA~NN
COMMtjCN/AP/MSTARTSTARCSTAR,DVSTAR,CC3P,SRECIF

Reproduced from
best available copy.
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CCf0'CN/AC/KSC
CCPPFC,/F/SGKgVCLFP
CPCt'/AG/CCNC1 ,CCNC2 ,CCIC3 ,CCNC4 ,COtC5
CCPPCh /A f4/SIGK UPv SK UP
CCtMN/AL/LESTGWI\,CAmOW,TEmpflw,S1ZEx

Z REYt !N,PEYNDW,REYUP
CCPC/A/XIdPTXCMLEST,JLESCW
COMMON/ AO/EYEOIRFCC S IGCU ,I I W

C
1 FDRfJATfT2,IRrzAE TFN rImENSTDNPL INPUT VELCC7ITTES AND LAST CELL OF-

7 INSIDE TUBE AE 517ES: SI7E'V=VTN,VCU1,CELLYN')
2 FDPP~AT(T2*VIN=F 8.4,1 VnUT='F8.4,' CFLL IN=IF 3. 0)
3 FCPMAT (T2,'PEAC ANN'ULAR PNCLE FRACTICN'S M S17EC: SIZEX=XCl, X(12,-

Z YC02, YF209 YN29 TEfPPERATLPFI)
4 FCR!VAT (T2,ICD=tF5.3,I 02='F5.3,' C02='Fo3,' H20='F5,4,' N2=tF5*3,-

Z 0 TEF'F='F7.2)
5 f0RMA(T3,ISDCKFTUUFM')

C
C ---- EAD IN INPUT VEICCITES MCE LAST CENTER TIJEF CELL--

100 UP ITF (E 1 1
PEA[ (59SIZES)
\I N=SI ZE(( Il
VDUT=STZEV(2)
CELL Tf=S IZEV (3)

NTUPE=CELLTN
102 PIN=RCUT*NTUSE/fI'fNI

*vREF=VCLT.+(VIN-'%CU)*FIN*RIN/(RCUT*PCUT)
VTN=VIN/VPEF
'CLT=VCUT/VPEF
\LP=VWN/VPEFF
UPMAX=VCUT/VRF
EY=EYST API (VRFF*VPFF)
KTUF3E=KTUPE4-l
NANN=NTUBE+ 1
EUL NC=PST API(S CST AR*VPE F*V EF)
RE'(C=SGSTA*VPEF*RCLI/PUSTAP
PARTRE=PE 'INC*ML51AR~

103 PUP-0.o

S ICUP=10
SUFPAX=1,
INC C?' F=C

C----------- SET CENTEP TUBE MeLE FRACTIONS --
1030 CC 1031 I=29NTUFF

FCLFLP(I ,I)=0.
RCLFUJP( It 2 =042
?CLFLF C I 3=.
MOLFUP( I,'i=0.,
P~CLFUP CT15 )=1958

1C31 CCKTI!'UE
C----------- READ IN ANNULAR CCNCENTRATTCNS ANC TEPPER ATUR E--
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C104 bVRIIE (6S,3)
REAC (%,SIZEC)
WRITE (69,4) STZFX

C---------- SET ANNULAR UPSTREAM NCLE FRACTICNS ANC TEMPERATURE -----
105 CO 1C6 K=1,5

CC 106 I=NKIb1TIN
'CLFLP(I,K)=SIZFX(K)SIZEX(K)

106 CONTINUE
TEmFCW=2. (SIEX(6)/TSTAP-1.)
TPC%=TEYPCh/2.

C----------SET UPSTREAM MIXTLRE MOLECULARP FIGHTS-----
107 PtTXIN=o42*PCLWT (2)+t.8*MOLWT(5)

M'IXCh=2.*(SIZEX(I)* CLhT(1)+SIZEX(2)*F'CLWT(2)+SIZFX(3)*-
z PCLWT(3)+SIZEX(4)*MOLhT(4)4SIZEX(5)*FOLWT(5))
1070 CO 1071 I=2,hTUPE

PMI UP( I) -I Il XI K
1071 CCNTINUE
1072 CC 1073 I=K6NN, INI

MMIXUP(I)=wIXOW
1073 CCNTTNUE
108 fLESIN(1)=NPIXIF

MLE SIN(2) =2.*OCLTT(5)
fLESIh(3)=WMIXIN
VLESI(4)=YVIXIb

1080 CO 1081 K=1,4
PLESCW(K)= (MMIXOW-2.*S ZEX(K)*MOLWT(K ) l/(.-SIZEX(Kl

1081 CCNTINUE
1CE2 CO 1087 K=1,4
1083 CC 1084 I=2,NTUEE

PLESUP(I,K)=VLESIN(K)
1084 CONTINUE
1085 CC 1086 I=hNN,IWITN

PLESUP(I1 ,K= LESC(K)
1086 CONTINUE
1087 CCNTINUE

C----------CALL IN VCRE GAS FRCPERTIES-----
109 CALL PRORA

EYECh=20 *8.31434+7**SZEXZ(6/(GAMW*MMIXOW*MSTAR*VREF*VREF)
ENGCW=E YE Ck+.S 5* VOTU7* VCLT
SICCW=EULKC/(GAMOW*EYECW)

C-------- SET UFSTREAM SCHPICT NUMBERS-----
1CSO DO 1095 K=1,4
1091 CC 1092 I=2,NTUPE

Sf ITUP(I ,K)=2. *SITIN (K)
10C2 CONTINLE
1093 CC 1094 I=NANN,IMIN

SfITLP(I,K)=2.*SPITC (K)
1094 CONTINUE
1095 CCNTINUE

C---------- SET LFSTREk PEYNCLCS NUNBERS-----
1096 CO 10q7 I=2,NTURE

REYUP( I )=PEYNIN4REYNIN
1C5 7 CONTINE
1098 CO 105 I=NAN,1 IN
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PEYLP I)=REYNCW4RFYNC'C
1CSS CON1INLE

C ---------- SET ZERO VARIAPLES IN ENTIRE GRIf)-----
11C CO 11e J=1,JMAX
111 CO 117 I=1,TTAX
112 FR(I,J)=0

FB(I,J)=C.
UP( I, J):oUZ( I,J)=C

LRCLD(I ,J)=0.
ZOLO( Il,J)=0.

113 CCT(I,J=Oo.
BETAPT(I,J)=O.
BETAVR( IJ I=O0
eETAVZ(I ,J)=0

114 C(I ,J)=Co
P( I,J 1=0.
C(II,J)=O
G( I ,J)=C

115 Q00L( I,J)=Oo
GCLC(I,J )=O
Tl(I ,rJ)O.

C---------SET NONZERC VARIABLES IN ENTIRE GRIC-----
116 ENG(I,J)=EY

ENEh(I J)=EY
EYE( I ,J )=EY
ECLC( I,J =FY
EYCLD(I,JI=EY
NRE( I,J)=REYNC
hPR(l,J)=PRAhhC
GAVY(I ,J)=GANIb
MOLMIX(I,J)=Io
SUh( I,J)=GAC Y (I,J)*EY/EULNO
SIG(I,J)=1.
SOLC( I1,J1=1
CONC(I,Ji=lo

117 CONTINUE
118 CC\TIKUE

C----------CEFIhE SPECIE CUhNTITIES FOR FNTIRE GRID-----

120 MFINIT(1)=0.
dFIKIT(2 )=C 21
tFINIT(3 )=C.
MFIMI( 4 )=C.
VFINIT(5 )=0.79

121 SKIhIT (I1)=C.
SK INIT(2) =C21*4CL'T(2)
SK INIT (3 )=0.
SKI IT(4)=C.
SKINII(5)=Co79PCOLWT(5)
WRITE (69,5)

C---------- STCRE IN GPIC-----
130 CO 132 K=1,5

XX=VFTlhIT(K)
131 DC 132 J=1,JLES
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CC 132 I=1, TLES
PCLFP(I J, ) =XX

132 CONTINUE
133 CC 135 K=1,5

XX= SKI KIT( (K)
134 CO 135 J=1,JLES

CC 135 I=1,ILFS
.IG (I ,J,K)=XX

135 CONTINUE
136 CC 137 J=I,JLES

DG 137 T=1,ILES
CONC1( I,J)=c
CCNC2(I,J)=0.21
CCC3(I ,J)=C°
CCC4 (I, J )=0
(ONC5 ( I, J )=0 79

137 CChTI NE
138 CC 13G K=1,4

XX=o5*MLESIN(K)
DO 13S J=1,JLES
CC 13C I=1,ILES
PLES(I,JK)=XX

13S CONTINLE
C---------- LCAC INPUT VELOCITIES-----

14C CO 141 I=2,KTUE
1Z(I92)=VIN

141 CC.TIKUE
142 CC 143 I= bAh,lTIN

VZ( I, 2)=OUT
143 CCKTINUE

C---------- SPECIFY INPUT PASS CChCENTRATICNS-----
150 CO 155 K=1,5

XX=VCLWT( )/IX I
151 DC 152 I=2,hTLBE

SICKUP(I,K)=MCLFUP(I,K)*XX
152 CCTINUE

YX=VCLjT(K)*SIrCW/NmIycb
153 CC 154 I=NtNN, IMIN

S CKUP( IK).= Ci.FUF(I,K)*XX
154 CCTIh LE
155 CChTINUE

C---------- SET SCME UFSTREAP CCNSTANTS-----
160 00 1f] I=2,NTUBE

CAPUP(I)=2,9GAMIN
161 CCNTINUE
162 CO 163 I=NANN,ITIN

CAPUP(1)=2.*CGAMOW
13 CCKTIILE

200 JSTART=3
INCCIF=C
RETLRN
ENC
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C P0WNk - WIEDEP rUPROUTINF POLN FOR FLCMD: - Pr-SUMES A DUCT WITH
C COAXIAL FLCW ENTPY OF A CO-PR ESSIBLE FLOYD) WITHIN IMPFRMEARLF
C Nfl- SLYP WALLS. 714r UPS TPrEAm PRFSSUPE IS C ALCUL AT 1C. US IN r T14r
C 1-CMEr'TUM FOLbTinNS AND DOWNSTRE-Am PRrSSURE I S HELD CONSTANT.
C SLI7APLE rNLY FCR LOW VPCH NUt'PERS. rENTER JET FLUID TS AIO
C AT 7C nEG F AN)t Ar'r'ULAP FLUID IS Al' yrpbL ?iIXTURF OF Cn, r2,
C CC2, 1-20, ANC N2 AT A DIFFERENT TP-PEPATUPP. THESE CnNCcNTPATIONS
C ARE f-FID CON'STAN'T. USEC IN NDRCP=13
C

SLBRCLTIr'E PruN

IMFLICIT PEAL4DCA-tP,O-Z)
C

2 EYE(23t43 ),ENG(23,4!)
D I FEhS I Ch ?(23,'.-3) ,C(23,431 ,SCLC(23,4A ), SKtIP(?3,5 1,S I ZXf(-
CIMENSION RATI(23)9RAT2(23)
CIPENSICN SICK( 23,43, ~ ),SCIJN(23,431,CDNT(2?,4-l
DIVENSICN CCNCUF(23),CCNUPI(23),CDNUP2(23),CD1-UP3(231,CfDN\UP4(23),-

7 CO1-UP5(22)
CI'Ef'SIC' S!Gf(IP(23,5),SNJTTUP(?3, 41,CANIUP(?3),T( 23t431,PE:YIJP(2?JA
CIPWENSIC- SPITCNW(/,1S? ITTKr4)
CIFEKSICN COr(34)CN22,3,CK'(?41CN4?93,

2 CONC5(23 431
C

REAL4-8 LT,?flLMTX(23,43),NDLF-R(23,4,5) ,'CLFUP(?3,5)
REAL*A NPF(23,43),N\PR(23943),C.AIJY(234,Co-NC(23,43)
REAL*F wLTRRLT )qLSU 2 4 t XP2
PEAAL*P f4LES(23,q43j4,NSC(?3f43,4)
REAL*e K\;IN'-CLT

C
COP.Cr'/~A/IPNI,IMAIN,ILS,TIMAX,JmNl,JMTN,JLFS,JMAX
COvNPl/CC/PRSIC,,URptvi9rYEF'c
COMMON/CD/BC4 *RC6,ERPRSqITESTJTFSTjKSTCPNCCUNT,ER0Pj
CCVPCl'OE/PP,PT TNF,TALJ
cOcfr'/G /PUPRPN~Ax f ICUPSUPMAXDSI, VF1 UPVUPMAX RDL, FPFQ
COmMON/I-H/PR,DSCLDiPUP2,SuP2
CCN?4Cl/KK/SCuN ,CONT
CCr'C/LL/FYSTARPCUT,LT%ULNC,F-Y1,STC\-,SMITNOI,RNNO,VREF

CCtPC/CC/TA,TCyC,PPCP,P1,THETA,PST,PrTAM,PETAV,BETAI,RFTM(,DtpIY
CCVMCN/li /PAT1 ,RAT7
CCNlFCl/XX/R IN, V N,VOU1,NTU~c ,NA1NN
CCFPIC/ACfNRE ,NPR,Ckt'JY, tOLM'IX, CDNC
COPMtON/AC /1SC
CC~fPCN/AE/CC?, CC9,CCqCC16 NPROP, NSPFC Y, rSPECI MULTI C,NY,NI N,KN0=ACT
COPdPON/tF/SIO-KqFCLFP
C0MfION /ACCCNCI ,CCNC2 ,CC1C3,CCNC4,CCNC5
COf0PCK/fA-/S IC-KJPSKlJP
CCMCN/LMLES,QC7,ANIN,AOWTE?4PCW,ST7FX
CO"NA/fLU~m UL U, MTPCAdP PTNSIr,

7 FEYr' 1\-,REY'CWvPFY EUP
CCT0MC1/AC/E'YECW,Er'GOWCVSIGCW,TFDW4
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C----------C-LLFC AT FPIX6 f130-----

C ----- CALCLLATF RCH CCEFFICIENTS-----

90 XI=ILES
CCC=( T4xI-3 0 1/(XI-o.)

91 XI=IMIN

92 ECI=CCC*ECL
eC?=CCC*-(XT-2.1/(X+XT-3)
eC3=4./RDL
PC4=PCL' EULNO

PC5=2./PCt
PCf=1./EULNO
PC7=4o*EULNO
RCE=8o.ELLAC

93 KVIN=2o*VIN*I.
K'Ct T=2 . VCUT* S ICCW
EY=FYSTAP/ (VREF*VRFF

NFIFST=1
c.4 DC 9$ I-=2,IVI'

CAMMY(1,1h =GAUPII-GAY(1 ,2)
95 CCKTINUE

C
ENTPR PCLKA

C
C---------- CALLEE NEAR FMIX6 232-----

C ----- CALCALATE FR, PR, UPSTREAM ANC COWNSTREAM-----

ICO CO 101 I=2IMIN
PP(Tl)=FP( I2)-C( , 2)/PC4

FB(JLES)=-PF(IJPIN)I

C 101 CONTINUE
C ----- W6LL-----

C 102 CO 103 J=.,JLES
PB(ILES,'J)=PB( IIN ,J)+ (I tESJ) / ULNC

C 103 CC.TINUE
IF (NFIPSToFQ .1 CC TC 200

IF (PHIOEOQ.1) PETURN

104 CC 105 I=2,IMIN
PR(I,1)=Pn(1,2 )-( J2 /PC4

1C5 CONTINLE

106 CC 107. J=2,JMIN
pR(ILES, J)=PR(ININ,J) P(IlhNJ)/EULNC

107 CONTINUE
IF (RFIPST.EOJ.) Gn TO 200

PETLR

CC.
C ENTRY PCUNP
CC

C---------- CALLED AT FPTX6 ;41 -----

C ----- CALCULATr SIG F SOLD, UPSTREAM. ANr DOWNSTREAM-----

200 DO 2C1 I=2,IPT
SI( I,1 )=-SIG( I 2)+SCLD(I 1)+SCLD( I 21+2.*(P (I ,1 +PR(I,2 -

7 -PP(II1 )-F 
l ) ) / ( S C U

M
( I ,1)+

S O UN ( 1 , 2 ) )

SIG(I , JLF -2o . -IG (I JN I )-SIGt"J)
C 201 CONTINUE
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---------- WALL AND CENTCPLITE-----
202 CO 20? J=2,JMTN

SIG(1 ,JI=S I (2,J
SIG(ILESJi=SIG(IT ITK J)

203 CONITNUE
IF (FIRSToFQoO) RFTUPh

204 DO 2C5 T=NAKTI1K
SICG(I,1)=2.SIGOh-SIG(I,2)

205 CChTINUE
C

EKTFY PCUNC
C
C---------- -CALLEC AT FPIX6 46 C-----
C ----- CALCULATE VELOCITIES, UPSTREAM AND CWNSTREAM-----

300 CC 301 I=2,NTU E
vZ(I 2)=KVIN/( SICG( T,l) IG(I,2)

301 CCNTINUE
302 CO 3C3 IhAKh,I TN

VZ( ,2)=KVOL'T/( SIG( I t,)+SIG(I,2))
303 CCITINUE
304 CC 3C7 I=2,IMIN
305 VZ(191)=24VZ( I ,2)-VZ(I ,3)-BC3* (RAT1 (T)*LP(I+1,2)-RAT2(I)* UR(T,21)

UP(Itl)=-UR(I,2)
3C6 Z(I JPAXI=2o*VZ(I,JLES )-VZ(I,JtIN)

UR(IvJLES)=UR(I,JMIN)
307 CCNTINUE

C ----- I-LL AND CENTERLIE -----
?C6 CO 31C J=29JLES

%Z(ILESJ)=-VZ(IV ,J)
R(IMAXJ =-UPf( ITN.JI

3CS VZ(1,J)=,Z(2,Jl
310 CChTINUE

IF (NFIRSTEQ.1) GC TC 400
RETURN

C
ENTRY BCUhC

C
C---------- CALLEC AT FPIX6 t360-----
C---------- CENTERLINE ANO WALL-----

400 CC 401 J=2,JMIN
EYE(1 J)=EYE(?,J )
EYE(TLES,JI=EYE(IVITNJ)

-401 CCNTINUE
C-----------CCWNSTPE-----

402 DO 403 I=2,TIN
EYE(I,JLES)=BCP/((GAMmY(I,JNIN)+GPMPMY(I,JLES))*(SIG(I,JMIN)-

Z +SIG(IJLESIM-EYE(I,JINI)
ENC(IJLES)=EYE(IJMII\)+EYE(I,JLESI+VZ(I,JLESI**2+UR(I,JMIN)**2-

7 -EhC-(IJMIN
403 CCTI'hLE

C---------- UPSTREAM -----
404 CC 405 I=2,NTUPE

EYF(TI 11=2*EY* (o5*()+SI(,)+SIC- ,2) ))12GAIN-EYE(11?)
EIN=EYE( I,11)+EYE(I,2)+V7( ,212**2
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'i0 CONTINUE
406 CC 407 I=NANN,TPTN

EYE(1 11=2.*PYECIA*(. 5* S IG( I l I STG( ,21)/S ICCW)**Anw-FYE( 19 2
F I f=EYE( 1, 1 )+EYF (1 9 2)+V7( (1,2 )** 2
ENC(I1 =EIN-FNC( I,7)

4C7 CCNI INLE
IF (KFIRSToFOoll 6O TO 600
RETURN

c
ENTFY SCUNF

C
C----------- CALLFC NEAR VASS2 0'2SO--
C----------- CALC UPSTREAM ANC DOWNSTRFAM MIASS (CCNrENTPATI!ON's--

500 CO 502 X=1,4
5C! 00 5C2 r=?,ImIN

SICK( 1,JLESgK)=2.*SIc.,( IJP11N,K)-S ICK(T,JMNNK
502 CONTINUE
5 01 CC 505 K=1?4
504 CO 5C5 J=2,JMIN

SICK(TLFS,JK=SGKTIvI,JK)
5C5 C Ch 71 NLE

C
ENTRY SCI~hG

C
C----------- CALLEC AT M4ASS2 4312 AND NEAR FmTIXE fl20l--
C----------- CALC LPSTREAF ANC rCUISTRrAM CIJAN71TIES --
C------------fR IPLE SUBS0R1 PTS ----

600 IF (NrPCPFC.11 CC TC f02
00 CI 0 =1,5

60fl0 CO 6001 1=2,NTURE
5KUP( I,K)=.5*SICKUtP(T,K<)*(ST,(I,1+Sl,( I,?))

6C01 CONTINUE
6002 CC 6003 I=NANI, IMTN

SKUr(I,KI=SIC0KUP(TKI*.5*(STC.(Y,1)4S!G(,2))/S!GOW
6CC? COVIINUF
601 CCNT!MJE
602 CC 603 K=1,5

0O f03 1=2,!MIN

SICK(T,JLES,K)=2.*SIGK<(T,JP4TN,K)-SIGK(IjPKNI,K)
603 CONTINUF
604 CC 605 K=J, 5

CO 605 T=2.IlV!N
MCI FR(1,1,K)=I'CLFUP(!,)MLFTIK
PCLFR(I,JLESK)=2.*MCLFR(I,JMJN,K)-MOLFP( !,JMNI,K)

6-05 CONTI NUF
6C6 CO f607 K~=114

CC 607 1=2,IMIN

MJLES( I, JLES,K1= 2.*MLE 1, JM IN,)-MLE S(I, JMNII
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6C7 CCNTIrKLE
6C8 Co '60S V=7,4

CC 609 1=2,IMlN:
Nt!C HI1 IK) =SMT'Tp U( I k)-KSC( ,92K)
NSC(IIJLES,K)=2.*NSC(ftJt~INKJ-NSCU,JK/Ny,KI

609 CON~TINUE
C ---- DCLBLE SUPSCPTPTS --

610 CC 611 T=2,1PMlN
CCNCUP( 1 =2.*fS I-( III)4SIG( 1, 2) )/MM I XtP( I)

611 CC NT INUE
612 CC 013 1=2,IMIN

tOLtX(1JF)=2.*dxuP()IMoXyx,JI)MtI(,PT

COhCE 1, l)=CC'NCUPM -CCNC(1, 2)
CCNC(T,J1ES)=2.*Cc-NCtl,JIN)-CrJKc(I,JmI

613 CONTINUE
614 CC 615 1=2, IM IN

CCNLP1 ([)=2,*SNLUP(TII)/PlCLt;T(1)
CONUP2(1)=2,*SKcP(T,2)I.CLIA(2)
CCNUP3( I )=2.*SlkJP( I, 3)/NCLWT (3)
CONLP4(I)=20 *SKL:P(I ,4)/tPCLWT (4)
CONUP5( 1)=2.*SK UP( 1.5) /MLIT( 5)

615 CONTINUE
616 DC 6-17 I=2,T)PIN

CONC1(I,1)=CONUPI.(T)-CCNC1(1,2)
CCNCI1JLES)=2o*CONC1(1,JMN)-CNC(T,JdNI)
CCNC2(I,1)=CONUP2(11-CCNC2u1,2)
CCNC2(I, JI ES )=2 0 *cNC2( 1,JM IN)-CDNr 2(1,J UI)
CONC3(1,1)=CCNUFP3(I)-CCNC3Ui2I
CONC3(1,JL )=2*CONC"rT,JNIMh-CCNC3J,JN'I,
CCNC4( 1,1 )=CnNUP4( I -CO,13C4( 1,2)
CCNC4(I,JLES)=20 *CflrC4(I,Jm1H\)CCN.C4(1,JPNI)
COICS( 1,1 )=CONUPS( I)-CCNC5(1 ,2)
CCNC5(IJLESJ=2O*CCNCC(T,JMINI-CONC(,JfMTlI

617 CCNTINUE
C----------CENTERLINE AND WtLLt--
C----------- TRIFLE SUPSCPIPTS --
630 DC f31 K=1,5

PC 631. J=,JMIN
SIGK( 1,J , K1)=5 IGK (2, J,K)
SIGK(ILES,J,K)=STGKlpIN9J,K)

631 CCP'TINUE
632 CC 633 K= , 5

DO 633 J=2,JMTN
633 CLFR(ILES,J,K)=MOLFR(IMIN,J,K)
63CONTINUE

f34 DO 63F K=194
ICC 635 J42,JmIN
FLES(1,J,KI=IMLES(2vJ,K)
MLES( ILES,J,K()=VLFS( IPIN,JtK)

635 CCNTINUE
636 CC 637 K=l 4

CO 637 J=2,JMIN
NSC( IES ,J,K )=NSC( IMINJ,K
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?,7 CONTINUE
--------- CCUPLE SUPSCRIDTS-----
x.C CC 61 J=2,JPIN

MOLMIX(1Ji=MOLIIT2,J)
POL IX( ILESJI)=CLMIX (IMINJ
CCNC(1,J)=CCNC(2 ,J
CONC(ILES,J)=CCKC(IPIh,JI

/;41 CONTINUE
42 D00 643 J=2,JPIT

CONCI( 1,J =CCNCI(2,J)
CCNCI(ILES,J)=CCNC1(IPIN,J)
CCKC2(1,J)=CCNC2(2,J)
CCKC2(ILES,J)=CONC2(IMIN,J)
CONC3 (1 ,J)=CC C3(2,JI
CCNC3(ILES,J)=CONC3(I TIN,J
CCNC4(1,J)=CCNC4(2,J)
CCNC4(ILESvJ)=CCNC4(I'IKJ)
CONC5(1J)=CONCF(2,J)
CCNC5(ILESJi=CONC5 (MIN, J

/, 3 CCNTIt U
IF (NFIRSTeEQ.1) GO TC 700
PETURN

ENTRY BOUNH

S ------ CALLED NEAR FYIX6 87 0 7 AND NEAR 0201-----
S-----CALC GAMPY AND TEMPERATURE UPSTREAM AND DOWNSTREAM-----

Q00 CC 701 T=2,IPIN
GA PYIi ,1) =GANFU ( I)-GA V II,2 )
CAMMY(I,JLESI=2.*GAMMY(IJMNI-GAMMY(T,JVKT)
( I ,JLES l = ( GA NY ( I, J m Ih +GAMMY ( I, JL ES ) )*( MOLM IX( I, J1I N)+MOLMI X-

(I ,JLES))*(EYE(I ,JmI )EYE( IJLES))/PC7-2.
701 CCITINUF

102 CC 703 I=2,KTURE
7(I,1)=2.*(.5*( SIG( I T,1)+SIG(I ,212 ) )**GA IF-T( I,21-2.

7O3 CCNTINUE
/94 EO 7C5 I=NA b,TPIK

(I , 1 )=( TEy POW+2., )*f( v ( SIG (I , )+SIG 121)/SIGOW )**GAMOW-T(1,2)-2.
/05 CCNTINUE

U-------CENTERLINF AND WALL-----

l)4 DO 11E J=2,JMTN
'/J5 GACPY(1,Ji=G~MMY(2,JI

CAVFY(ILESr J)=GAMVY(TIN,J)
T(1,J)= 2,J)
T(ILES,J)=T(IMIN,J)

I16 CCNINLF
C= -------- CALC REQUIRED BCLUDARY VALUES CF NRE-----

1Jf CC 718 I=2,IMIN
RF(I ,ll=REYUP([)-NRE(I,21
NRE(I,JLESI=2.*NRE(I,JMINI-NRE(I,JMNI)

118 CCITINUE
j|l. DC 720 J=2,JMTN

NPE(ILES,J)=NPE(TMIN,J)
I qf CONTINUE
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IF (NFIRSTaEOe0) QETLRN

E1IPY OCLNE

C ------CALLEt AT FPYX6 071--
C -- CALCLIATE FP UFSTPEAM t?\t COWNSTPrtk---

800 CC P04 1=2tImTN

FR( I,JLES 1=-PP(T ,JMIN)
804 CONTINUE

---- W A LL--
805 rC e06 J=2,JMTN

FR( TLES,J)=(G~mY( Pq~J)GAPMY (ILFS,J) )*(SIC( IMTNtJ )+SIG( LES,J))
7 *(EYE(IMTN,J)+E' E(ILES,J))fi9C7-PR(Iy!Nk,J)-2.

8%6 CC NT I JE
NFPS = C

REIRN
ENC
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C PROPS6 WIEPEP SUppnUTINE PROP FCR PRCPEPTIFS CF FLUTI) fk6i A MIXTURF

C CF CAppcN MCNOXICE, CXYCFN!, CARPON rTCXI0F, WATrR VAPOR9 AND

c OXYGEN WITH 'TFtJFEFATUQES VbRYINC- FP(fl 294 TO 200-1 CEG Ko

c PRESSUPF=AEnL)T I ATM, 141XTURES AND GASES ASSUMEC TrlEALe
c COPPLTES SPECIFIC GAMMAv VISCCSTTIESf T14ERMAL
c CONDLCITVTlIrSt DTFrUSTcN CcFFrTC.IFhT'Z, ANG i

c IKTEPKAL FNERCIES. CCMPUTES RFACTION RATE oF cr + 02 TO C02
c AS t FUKCTICK CF TEPPEPATUPE.

c

c

SUPPCUTI E FRCF
c

IPPLICTT PEAL*8(A-HO-Z)

C.

CIMENSION !IGK(23p4lv5)

CIlJFKSICN CCTHER(6q5q2)qCOMU(lq 5)t('()K(3, ),C0nV(4,41
CllvFt\STCK r)V(4),SPITIN(4)tSPITO.W(4)tXCF(5)gREYUP(23),CP(23,43)
CIMFNETON )(F( 5),T(2?,43) SIZEY(6) SMITLP(?3,41 GAMUP(23)
EIVENSICN FP(23,43),SIC(23,4?),LR(2394?),VZ(2?,4?),-

z EYE(23t4?) rkG(23,431
c

PEAL*8 OUST Rv TARLTMCLWT(91,MOLMTX(2?,4--),MWT(5)
PEAL*F hSC(23t43,4),1'CLFR(2?v43,?5)
REAL*8 NRF(2?,43),NPR(2?,4?tC-AMPV(2?94119CCNC(23,431
PEAL*8 PLWTCWMMTXOWPLWTINMMIXINMLFSOW(4)#MLESIN(4)
PEAL*E NSC2(2394?1,k C3(23,43)vK'SC4(23,43)91'LES(23,43,4)
PEALVP PCLFUP(23,51,MMIYUP( 23101LESUP(23,10

c
INTEGER SPECYI/4H CC/,SPECY2/4H 021 SPECY3/4H CC7/9

7 SPECY4/4F F20/,SPECY5/4p N2/,-,PECYE/4H AVG/
INTEGER SPECTF(6)

c
CATA CCTFEP/3o7lOO928C4CO9-1.6lqO9640-0?9?.6923594D-f.)6,-

7 -2.C319674C-Oq,2*3953344C-13,-1.4356?IOC404,lo625'ig89D+f).n,-
7 -lF7P2lE4r)-03,1,0554 440-C6,-6.76?51?lr-C(;,2,15559()3f -12,-
z -lo0475226C40*-,2o4OO77S7C+OOv8o735f)'?!7C-C?,-6o6O7C878D-069-
z 2,CC2lP61C-09.6,32740?qC-16,-4.8377527C+n4,4.07t)1279r,4t)D,-
7 -llOe44q3r)-03,4,15211ECr)-C6,-2,96374040-C';,8.0702103C-13,-
7 -3.0279722r4O4,3.674P261C+C(-',-1.20RI500r)-C3,2.3240102D-06,-
z -6,?21755,;C-10,-2.2577253C-13,-I.1)6115PBC+)3,2.9R4O696r +00,-

z l,4F9lqOC-03,- .7P';Sfe4r'-01,1.C3645771'-IC,-6,c3353550f)-15,-
z -lo424522eC+04v3o62195 5C4OOv7,3618264C-C4,-1.96522?Pr)-07,-
z 3,E20155EC-11,-2.8945f27D-15,-1.2019825C+()?,4.4608041r-+00,-
z '2oO';El7lSC-O?,-1.23q2!1!D-Cf,2.274132!D-IC,-1.55259r4D-l4,-
z -4oQ961442C+04,2,7167633C+00,2.9451374C-C3,-8.0224374--071-
z l*C2266P21)-109-4.847214 0-19,-2.9905P2( C4C4,2.e963194C+00,-
7 195154866C-039-5.72352-t7C-07t';.9807-9-3f--11,-6,5223555D-15,-
7 -9eC5P6lE4C+02/

EATA CCMU/7.014?939C-C5,3*1;44947OD-C7t-C-e37CEIE35D-119-
6,164C591P-05.5,21216 ;PE-07,-1.004531IC-10,3.12(;412r)r)-Os,-

I 4o4C210SEr)-079-EoOOE21!10-11,-4.lr43?()rC-C5,4.4367979[)-07,-
7 -2,8399462D-11,7,00653EJC-05,3,9486818C-C7,-6,3914576r)-Il/
c
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CATA CCK/1.4782E?5C-0%,1.5677?62D)-07,-1. -27'.723D-11,
7 5.1593532C-C6,2,02'5l356C-07,-39103(O27%3I-11,-1e9I4168Cf)-09-

7 6.5700666r-l1,l0 P609C61C-0515C8'l~, 1-,3584r-1
C

CATA COOD'/-7e43!75710-C2t, 9 '744264fl-G4,1.C;7C2520-069-
7 -6.14438 1?r-11,-q,527C522C-C3,2.4471186D)-0L,1,6668767D-06,-
Z -2.6556CEeC-10,-7.09 15EC-2,479c!893C-n'.,1.1313R 12f-06,-

I -2*5229710C-10I
C

C0I$CN/A/1mNT,TMN,Tt"#IAPN!JP1T#JJLESJMAX
CO'N/CC /PR, S I r-UP ,V2FYE, ENC
COMMON /LL iFYSARRUT LT PFULNC, REY NC,STQCVC,SP IT NO, PRANC, VPEF
COtNPCIN/NN/PSTARSCSTAR,mUSTARMCLWT, INCOMP
CCPCN /CC/ CAU,TCYC EPP CP P- I TET A,PS, FT A, ETV,8 PTA I RFTAK,f)CHTI
COMMON /AB/J STAR ISTAR tC ST AR ,D VS IAP, CCieg SP'EC IF
CCVCN/C/EF,CAdY,MCLMIX,CONC
C0P0'CN/AD)/NSC
C00PN/AE/CC2,CC8,CCSCC6t-vFCFNSPCY,SPECMULT0,NY,NN,PEACT
CCPPMCN/ AF/I 1K, CLFP
CCPCN/A/MLES,T ,GAtilI9GCIA,T'5IPCW,S17EX
CODPN/AM/MOLFUP,MmTXPMLESUPSMTTP,GAM'UP,SMIT!N\,SM-ITOW,-

7 PEVN REYNCW,PEYI)P

C
C---- CALLFE AT FMTX6 4130--
C----------- SET INItT~hL VALUES--

100 PW1T(1)=2e.Cl0
W(2) =32 .000

PkbT(3)=44.CI0
PT(4 )= 18e.016

SPECIE8 ( 1) = SPEC Yi
SPECIE (23= SPFCY
SPECIE (3 )=SPECY3
SPECIE((4 )=FPECY4
SPEC IECS )=SPECY5
SPECIE8(6 )=SPFCY6
NSP ECY=
tSFEC=4

101 PS7AP=.21*V'T(24.7q4ftWT(5)
EO 102 K=1,5

- ICLWT(K)=PWT(KI/MSTAR
1C2 (CITIINLE

C----------- CALCLLAT: RFEREK~E CP AND AM- -
103 TSTAR=5.*(7f).-32.)/9.4273.1
1C4 CPC2-l.q872*(COTHFR (1,2,l)+TSTA*(CFTFEP (2,2, 1)+TSTAR*(CD'THER(3,?,1)-

7 TSTAR*(CCTIPER(4,2,1)+tSTAP*CC'tHEP(5,2,1.))) ))
C VC2=C PC 2-1.9 872
C~2I'P2(OHRlF +S *(CT Q(,9 +SA*CTE(',5 1

z ,TSTAR*(CCTHER(4,5,I)+TSTAR*COI'HER( ,5,1)))))

CVN2=CPt\2-lo9872
CPSTAR=(.21*CPC2+.79*CPN2)/M'STAR



198

CVSTAR= ( 21*CV02+.74CVN,2 )/mSTAR
GAPVT =C STAP/CVSTAR-1.

C-----------CALCULATE PEFERPt\CE VT SCCSITY ANC T-RP~AL CONDUCT!IVITY --
105 XMUC2=CCPU(1,2)4TSTARO(COmU(2,2 )4T5TAP*COMU(3,2))

XMU1T2=CC(1,5)+TSTAP*(COmU(2,5),TSTAP*CCpUf3,5))
VUSTAR=.2 I4XMU0 2+.-7S* NUN2
XKC2=CCK(1,2).TSTAR*(CCK(2,2),TSTAR*CnK(3,21)
l(KN2=CCK( 1,5) +TSTAR* (CC'K(2 ,5) +TSTAR*CCK (3 ,5)
XKSTAR=.2 1*XK0240 79*XKN2

106 PSTAR1 0.C13?50+6
C ----------R-8 _31434D)+7 (GP'-SC CW')/(SC SPC-GP YCLE-CEG K) --

EYSTAR=8.?1434?*TSTAP/( GAMITN*MS TAR)
SGsA=PSltR(CAPI*EYSTARl
CSTAR=SGSTAR/MPS1AR
CSfI'TT=MUSTAR/SrCSTAR

C----------- CAIC CIFF-USIVITIES--
1C7 CO 10e K=1,4

EV(K)=CCCV(1,K )4TST AR*(CCCV(2,K )+TSTAR*(COrDV(3,K)+TAPR*-

108 CONTINUE
CVSTAR=EV (2)
SMI TNC=CS PI T/O V STA R
SM VT N(1) =C SM IT/DV( 1)
SJTIh(2)=CSM!T/1V(2l
S! TIK(31=CSm!T/cV(3)
StPIT Tl( 4 J=CSM IT /CV(41

109 FRAKNC=CPST AR*PUST A /XKST AR
SMI TKC=C SM! 1/DSTAR
1NPPCP=0
tULTIC=l

110 PATP=OSCRT(32s)/2Po01
PETUPN

C
ENTRY PROPA

C
C ----------CMLEE AT t1T12 4109--
C----------- CALC MU, )XKi CP, CV, GAYMY, FOR AN'CLUS AT START--
.200 KTIl

IP=SIZEY(6 I
CR E=ROUI* REF *SC STAR
IMLW'tCW=MM TXCW/2*
IF (TPoGT,,iO0.) IKT=2

201 SUmCP=00
* SuMcVz0.

S UP K= C
summ~o0

202 CC 205 K=1,5
2C3 YML=CCML(1K)+TF*(CCPLU(2,K)+TF*CCwU(3,K) I

XXK=COK( 1,K )+TP4(COK(C2,K)+TP*COK( 3,K))
XCP(K)=1.987*(CCTHE(,K,Ky)+TP*(COTIF(2K,KT)+Tp*.

Z .(CCTHEP(3,K,KT)4TP*(CCIFER(4,KKT)+TF*CCT4EP(5,KKTII)I))
XCV=XCP(K )-10 q872

204 SUIPCF=SUPCF+XCP(K)*STZEX(K)
SUMCV=SUFC'v+XCV*SI7Ex( K)
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SL K=SU',+x.:.,. S ~ .;1 X (K) -

SU P M= SU' x-. 1; -l .Y ( K)
205 CONTINUF

C----------CLCU' -- ' ; T ST hT INPUT VALUFS FR ANNULUS-----
206 GA C = SUNC '. 'C-.

CPCH=SUNCPitFMLWOW*MS1AR )
207 FR ANCW=CPCW'tSU P I /SUMK

RE NOC=CRE/SSLM
CSPIT=SUNN/SGSTRP

210 CC 211 K=1,4
DV(K) =CODO( -. ,) +'TP* (CCOd (2 ,K) +TP* (CCODV(3 ,K )+TP*CCDV (4,K) I )

SVITCW(K I=C:: T/CV(K 5
211 CONTINUE

C---------- CALCLLATE CONSTATl INPUT VALUES FCR CENTER JET-----

220 TEFFIN=0 .
CPIN=CFSTAP
PRAN IN=PRA NiL"
FEYNIN=REYNC

LN LTh=1.
RETURN

C
ENTRY PRCP

C
C---------- CALLEE AT NASS2 2q90-----
C--------- CALC PEACTICN RATES-----

300 CO 313 J=2,JMIN
301 CC 312 I=2,IWIN
302 T(1,J)=GAMV(IY J ,IJ*NCLPIX(I,J)*FYE(TI,J/ELLNC-1

o

TP=TF P(I,J)*TSTAR
TEMPl =SIG ( IJl)
-TEMP2=SIGK(I ,J 2)

PACC3438c8+99*OEXF (-1.15260+4fTP)
303 CO 310 N=1,NY

IF (TEMPILEoo0 .OP.TEFP2LEo,) GO TO 311

304 CELI<1=RA 1EC TE PFI*TE P2
CELK 2=RA TPDE K 1
IF (CELKI.CTTEP1) C TO 3CS
IF (DELK2.GToTElP2) CC TC 306
CO TO 3CP

305 IF (CELK2 0LEoTEPP21 CC TO 307
TEST=TEP2+TEVP2
IF (TEIAP.ILToTEST) GO TO 307

306 CELK2=TFMF2
DELKI=TEP2/RATP
CC TC 3CE

307 CELK1=TEFtF
DELK2=PA VCELK1

308 EELK3=CELK140ELK?
309 TErFI=TEFli-CFLKl

1EVP2=TENP2-DELK2
TEPF3=TEPF34CELK1+OELK2

31C COCN TLE
311 jIGK(I,J,10=TFMP1

Re p rod u c e d from
best available copy.
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IC1( 1, J,2 )=TER F2

S !GK(I,J,3)=TFPP3
112 CCKTIKUE
;313 CONTINUE

RE TLR N
C

ENTFY PPCFC
C
C ---- CALLEC NEAR FMI)C6 0201 AND FFPIX6 *7C7--
C----A LC GRID fPCPERTIES 4T ENC OF TIVE STEP BEFOR~E PRSSE---- ----
C----------- CALC NEW CP, CV, GAPPYt F~ 7EVP --

400 CC 426 J=2,JPAIN
4C1 CC 425 I=?,TMIN

KT=1
TP=(T(I,J)+19)*TSTAR

402 IF (TP.C.T*1000o ) KT=2
AC3 DO AC4 K=1,5

XF(Kl=tPCLFP(1,J,K)
4C4 CCKTINL'E

C----------- CAIC t'U9 Yk, CP, C'v, GAPPY9 & EF
410 SUM'CP=0.

s UpC v~C
SUNMK=C.
SUP0=0.

411 CC 414 1<=1,5
IF (XF(K).1r',n,-7) r~C TC 414

412 XCP(K )=Iq872*(CCfl.ER(1,K,KT+TP*(OT.4Fp!2,K,KT)+TP*--
z CCTHER(3,KgKT)+7P* (CCTHER (4,,KT)+TP*CCT.ER(5,K,KT 11 11

XCV=XCP(t l-1.9Pl2
XFVL=CCPU(1,K<)4TP*(CCMIJ(2K)4TP*COMU(3,K))
XXK=CCKf1,K).-TP*(CCH(2KTF*Ct<(3,v)

'613 SUPK=SUfAK4 XK *XF(K)
SU=SU.oXPU*XF(K )
sUI~CP=su?/CF+Xcp(K)*Xr(Kl
SUtJCV=SUr%4CVgvXF(K

414 CCNTINUE
415 GAMM~Y(IJl=!UMCF/SUf'CV-I.

CP(T,J)=SUIMCP/(MOLMI)((I,J)*JSTAR)
1(1 ,J)=CA 0'Y( I,JI*IPCLPIX(I,J)*EYE(IJ)/EULNC-1.

416 CSM~IT=SLIP/SGSTAR
NP F(I, J)=CRI:/SUtAM
KPp(ItJ)=CF(I,J)*sUPd/SUK

C----------- CALC DV AND NSC--
*420 CC 423 K=194
421 DV(I<)=CCDV(1,K)+TP*(CCCV(?,K)+T*(CCCV(3,K)+TP*C1DV(,K))I
423 CONTINUE
424 NSC(I,J,1I)=CStJqr/EV(1 I

hSC2(1vJ)=C5MIT/CV(2',
tNSC(I,j)=CSMIT/CV(?)
NSC4(1,JI =CSIVIT/CV (4

425 CC1\TI NUE
426 CCt'TINUF

C----------- STCRE PEST CF KSC NUMBcPS---
430 DO 431 J=2*JMIN
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CO 431 ,=20II1
hSC(I.J,2)=NSC2(T,J)

431 CCNTINUE
432 CC '33 J=2,JPTN

DO 433 I=2~IMTN
NSC (I J, 3 1=NSC ( TJ )

433 CONTINUE
434 CO 435 J=2,JMTN

CC 435 I=2,IMTN
NSC(IvJ,4)=NSC4(T,J)

435 CONTINUE
EFPCF=1
RETLRN
ENC



202

C PAD1 I TEPEF SLFRCUTH'NE PACT FCR FLCNIX9 TC PERFORM T14F ITERATIONS
( r F THE PPc'SURF F!ELI) - USES ALTERt\ATINC DIRECTICN IMPLICIT
C (Ac!) SCfHEmE OF PpiAN - INCLUD-rS TESTING AND INTERMEDIATE
C ViRITECUT OF THF PRESSURE FIELD - PRESSURE UPSTREAM I, CbLCUJLA'ED
C USINC MOMENTUM 4NE PRESSURE DOCwNSTREAM IS HELD CCNSTAMtT -

CQF INE IN'fPQPs%'3

SUPPCUT IKE PAC I
C

IMPLICUTl REAL*S(At-H ,C-71
C

CIMF'SIC?' CCLD (23 4'i ) tG 124 4
DIMENSION B(?3t'43)qD(23,43),SCLfl(23,43)

DI PEN SI CN PP(23,),FiI(23),43)ET3)r12,J()EJ4,J4)

DIMENSION PBHAF(23,43),SOUN(23,A3),CNT(?3,43)
C

C014 NAA /I N I WT MN, I LES , IVAX,JMN I JR IN ,JLFS,JMAX
COMMCrN/CD/BC4,PC6ERRS,ITEST9,JTEST,NSTCP,NCOUN'T,ERROR1
CD'fPC/E/FF,PTIPE, TAL'
COMfACN/FF /COLD ,G

CC~DN/-~/~DSL,PLP2,SUP2
COMMON/JJ/AIBTi ll2 ,CITIt EI FI, AJgPJll EJ2,CJ, 0.1,EJ,rJ,CC41,rCC2
CDMMO3N/KIK/SC'UN YCONT
CCPV /CC/CTAUt TCYC t EPPOR ,PPT1, THETA,9 PST, BETAM ,BE TA V,BETAYRTAK<,DCHI
CCVCN//NTTTFITAXNRITENFLU,NPP?,N'R,NL,NT,NTTER,NOUT

C
1 FCPMA8T(1-0,T5,lPP ARRAY, 1=2,ILES J=1,JLES N1=11490 NITER='15,-

Z 1 TAU='FlCo6)
2 F0PMAT(PICO13*!)
3 FOPMVAT(-0T5'FP('129u, 'I2,')= 'LPD3.'I rRRS='D135)
4 FDPFAT(lHCqT5v'P3HAF ARRAY, 1=?,IMIN J=2,JMIN NT='Ie.,I NITFR=T'%-

7 1 TAU= IFIC.6)
C
C ------- FPES5LRF TIERATICN---

100 NITEP=0
ER PC P1=ER RDR
tsTE ST=r
?STCF=O
11 1=2
J J J=2

101I E1=P11
pJ=pJ1
CC ?=CC 41
1T1PU=0

110 ITEST=T I
JTEFT=JJJ*

200 CC 203 J=I*JLES
201 CC 202 1=2,TLFS

PP C I =PB( I J)
202 CCNT I NUE
203 CONTINUE

C ----- FIR Sl HALF CH! STEP -- ---
210 cc 22q J=2*JMTN



203

JP=J+1

21-1 C0 219 T=2,IYTIh

P=Fp( I,J I
212 CI(Y)=-CC42*PP(,J )4FP(T,JM-P-P)(04.1.SON(,J)*P...O( ,)

IF (10 NE.!t'IN) GC TC 214
213 Cl(Ift1N)=CI(IMINI-CI(IMIN)*PC6*R( ILES,J)

CC0 TC 218
214 IF (IoNEe2) CC IC 217
215 EI(2)=CT(21/Bl

Fl (21=01 (2) 181
GO TO 21S:

217 E()C( /R-I )E IP

C0 TO 219
218 E!It'TN)=0.

219 CCNTINUE
220 CO 224 9=201MIN

1=1 MA X-K
221 IF (KoKEo2) GO TO 223
222 F8F-AF(IFIT,J)=F J(TMN)

-0 TO 224
223 PPIHAF( 1,J )=FI (1)-Elt(1 *PPHAF( I1,J)
224 CUKTINUE
229 CONTINLE

C ----- SECCNC IFALF CHI STEP --
230 CC 249 T=2,TIN
231 00 237 J=2tJFIN

JP=J,1
Jfi=J-1

232 P=PP(r,ji
PHtF=PPFIAFUI,J)

233 CJ(J)=CC42*(PP( ,P+PIJIPP+C4*PPA-HF
IF (JoNEo2) GC IC 235

234 EJ (2 )=rJ(2 )+AJ*O(1,2 )18C4
EJ (2) =CJ./ (AJ+BJ)
FJ(2)=OJ( 2 /(AJ+8J)
CC TO 237

235 IF (J*EC9JP'Ih) GC TC 236
EJ(J)=CJ/(f8J-AJ*EJ(JPqp)
FJ(J)=(CJ(J)-AJ*FJ(JM))/(BJ-AJ*EJ(JM)
GO IC 237

26EJ(JMIN)=C.
F(J IN )=(oJ (JM IN)-AJ JJ'4NI) )/(RJ-CJ-AJEJ( JMNII I

237 CONTINLE
240 CO 244 9=2,JMIN-

J=JPAX-K
241 IF (I(,NEo21 GO TO 243
242 PE3( I,JM IN I=FJ(JMIN)

CO TO 244
243 P8(1 ,J)=FJ(J)-Ej(jI*FP(19J+l1
244 CONTINUE
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249 CCNTI LE
115 CO 116 I=2,IMIN

F8(II)=FR (T,2) -C(I 2)/8C4
PB(IJLES)=-P2(I,JI~I)

C 116 CONTINUE
117 CC 118 J=2,JLES

PB(ILES,JI=PP(I IN,J)4eC6*P(ILESJ)
118 CONTINUE
119 NITER=NITFR+1
120 IF (KIEST.ECol) GC TC 140

C ----- TEST ERROR APRRAY FOR A FAILIURE-----
121 CO 128 J=JTEST,JMIN
122 DO 127 I=2 9 1MIN

PABS=CABS(PB(I,J))+DAPS(PP(I,J))
123 IF (PAPBSoLTolo-10) CC TO 127
124 EPRS=(P8(I,J)-PP(I,J))/PABS

IF (CAPS(ERRS.LToERROR1) GO TO 127
125 NTEST=1

III=I
JJJ=J
IF (NITEReLToITAX CCG TC 131

12!0 NSTOP=1
FETUPh-

127 CCNTIN L
128 CONTINLE
129 IF (ITEST.ECa2,tNCJTEST.EC.21 GO TO 132
13C ITEST=2

JTEST=2
CO TO 121

131 ITEST=III
JTEST=JJJ
GC TC 150

132 IF (NTHRL ECol) PETLRF
133 eI=e12

eJ=PJ2
CC43=50 *CC41
NTFRU=
ERPCP1=ERRCP/4.
GO TO 15C

C ----- TEST ERROR AT ONE POINT FOR FAILIURE-----
140 PAPS=CABS(PP(ITEST,JTEST))+CAS (PP(ITEST,JTEST ) )

IF (PABS.GTl1D-10) GC TC 142
141 NTEST=O

GO 10 121
142 ERRS=(PB( ITEST,JTESTI-FP(ITEST,JTEST))/FPBS

IF (ERRS.LT.ERRCPI) CC TO 121
C ----- TFST lRITECUT-----

150 IF (NITERoGF.ITWAX) GC TC 1560
IF (FCC(hCCUNTNTRITE)oECo.0ANDMOD(N TERNPR ITE EQ.O) GO TO 151
GO TO 200

151 WRITE (691) NT,NITER,IAU
CO 152 J=1,JLES
hRITE (6,2) (PE(I,J),I=2,TLES)

152 CCKTINKUE
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155 1RITE (6,3) ITEST,JTFST,Pe(ITEST,JTEST),FPRS
156 IF (NITERoLT.TTMAXI GO 70 2CC

1560 NSTCP=1
RETLPR
ENC
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C PASS? - WIEPEQ SUBROUJTINE MASS EFOR SOLVING IJULTTCOMPOMENT MAS. TqANJSFrD
C FLC~nS bITH Ft'TX5. CCES BINARY TYPE TPANSFER OF TRACERS TN A
c SOLVENT - CCMPUTFS ALL VALUES rESCPIPIG SPECIE QUANTITIFS*
C CCtkTAINS r-RRCP CCFPECT!ONS FOR FINITE OIFFEPENCING AknO A
C SCHEVE FOR ELTF'ItATTNG NEGATIVE SvFCIE OENSIT!ESo API ImPLICITO
C'
C

SUBPCLTII\E PASS
C

IMPLICIT REAL*S(A-H, 0-21
C

CIVENSICN FP(23943),S!C(23,43),UR( 23,43) ,'(23,43) ,-
z EYE(23,43),ENG(23,43)

DIMENSION CON\C(23943',,C-AMY(23943),T(23,43)tS(JM(23,43I
CIt'E!S ION RATiC 23)RAT2( 23)
CIMENSIC' CCKCl (23 ,43),CCNC2(?3 ,43),COt'C(23,43),CONC4(23,4-),-

Z CONC5( 23,43 ),SIZEY(6)
(ItPEI'STC S ICK(21,43,5 ),CIFIJZ( 23, 43,4), SOLD( 23,43) tSKUP( 23,51
C1?'EKS!C TERtMU(23 ,43) ,TERMV(23,43),SKCLC:(23943),SKAF(23,43)
CIMENSION AI( 23,43),81(23,43) ,C1(23,43),CI(23,43),E1(3,43)
CIt'EKSICK Fl(23,43hP2(23,43),E2t23,43), 5(23,43),SlrGKUP(?3,5)
0 1 EN~SI Ch 01(23) ,FI(23),FI(23),CJ(L-3),EJ(43),FJ(43)
EIMENSION COEFI(23,43),COF2(23,43),COFF3(23,431,COEF4(23,431

C
PEAL*E M4)c,MUSTAR,MOCLh17(E),MC-LMX(23,43 )
REAL#8 NSC(23q43,4)vMOLFR( 23,43,5)
PEtL*8 NRE(23 ,43), IFP (23943 ),ML ES (23,43, 4)

C
COMMCt\/AA/1NTMIN,IMT9LES,!mAXJNT,JIt\,JLES,JMAX
CCPNt/CC/PRSG,UR,VZEYE,!N\C
COMPON/NN /P STAR S-GSTAR PLST AR ,MCLWT 91 NCC
CCPCNCTAUTCYC ERROR PP1THETA PST PETAM,ETAV,BPETAI BFTAK,DCHY
COftICN/C C/'9YCCEF,CC15 ,CC17 ,CC32 ,CC33,CC34,CC35, CC36,CC37
COMIJ'NN/b~'q/RAT I ,AT2
CC PC1\XX/R IN IfN VCU'T, TUR ENANN
CCVC/AC/\RE,NR,AHPY,tPCLPIX,CONC
COvMON/AO)/NSC
CCMMCNftIE/CC2CC8CCCC16,NPROP,NSPFCYNSPEC,MULTID,NY,N\TN,NRFACT
CCMCNfA F/S [K,PCLFF
COMMON/AC/CONC1,CflNC2,CCIC3,CCNC4,CCNC5
CCPtP'Ct'/Af-/S ICKUP ,SKUP
CCIfdNAK/CC26 ,CC27
COMMON-/ALMLES,TGAM,C,AMCi,TEM4PCW,SIEY~
COMP'CN/ AC/ EY ECW 9E ,CW , S IC-OW ITPO W

C
C----------- CALCULATE CCRRFCIICK--

100 IF (PFTAKOECoQO) C-fl TC 110
iCI 0C IC6 J=2,JMPfN

JP=j 4 1
102 CO 105 T=2,!MNN

IP=14-1

Z +CC26*(UjPITP*J)+LP( IJ))**7-
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TE P ( t )C 1*V (9P -Z TJ )C2* V ( ,P + Z T J )*
103 IF (BETAK.GTG 1o GO TC 104

TERPAU(I,J )=B~ETAK'*TERML(I 9j)
IF PPV(I J)= PET AK*TERFV( 9J)
Go TC iC5

104 TERPOt(I,J)=EKCOFF*CAe'5(TEP.MU(I,J)I
TEPPV(1,J)=EFKCCEF*OAP%(TERMIv~,J))

105 CONTINUE
106 CONTIN~UE

C----------- CALCLLATF ACI ANU SUT,J) CCEFFICTENTS --
110 DO 116 J=2tJMIN

JP=J,1
JN=J-1

Ill CO 115 1=2,1ItN
IP= 141

Pl=RAT1( I )
F2=PAT2 (I )
VZ( (I ,J)

VJP=VZ( VJP)
112 A1(I,j)=-R2*UR(I,j)

CC I ,J)=PL*UP(TFJ)
Pl(I,J)=C1(I,J3.Al(1*J1+CC12
CUT ,J)OCC2*V
F-lU ,J) =CC2*VJP
E1(lgJ)=F1(ItJ)-DlC!,J)-CC32
P2 C J )=V-VJP-C03
E2C1 ,J)=V-VJP+CC33

113 XC=CCNC(I,J)
XM=VCLPTIX CI,J)

114 COEF1( TJ)=CC!64R1l*(CNC (IPJ)+XC) /('OLIX( TPJ)+XPJ)/(NRE( TPJ)+XN)
CCEF2(1,J)=CC36*P2*(XC+CONC(IN,J)(XMMOLMIX(IM,J))/(XNNF(lIj))
CCEF3(rJ)=CC37*(CCNC (IJPffXC1/(PonUIX( y,JPJ4XM,,(KNRF( 1,JP jXN)
COEF4( I,J )=rCC37*CXC+CCONC( IJ~)/P(XM+POOLMIX(I 9JM) /(XN+NRE( ,JPJ))

115 CONT INU E
116 CONTINUE

C ------- CALC CIFFUSION TERMS --
120 CC 128 K1914

121 CC 127 J=2,JMTN
JP=J+1
JM=J-1

122 CO 126 1=2,IMIN
IP'I*1

123 XF=IdCLFR(I,JvK)
Xm=fALES ( I, JKI
)N=NSCCI ,J,K)

124 CIFFUZ(IjK)=MX*CCOEF-I(I,J)*(MLESC IP,J,K)+XMI*CmOLFR(IP,J,K)-
Z -XF)/(NSC(IP,J,1()+XN)-CCEF2CI,J )*CXP'+MIESCIM,J,K ))*(XF-MOrR

C1'4,tJ,K))/( YN+N5C1(,JK))+CCEr3-(!,J)*(IvLFS(TJPtk)+XM)*(INrLF.
7 (IJPK)-XF)I'NSCUI,JFK1*XN)-COEF4(I,J)*C XM+MLESCIJmK)l*CXF-
Z -t'CLFP(IJPKI)/CXN+NSC(I,J',N))1
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126 CCNTINUE
127 CCNTIrUE
12R CONTINUE

C ---------- UPCATE INPUT MASS FLUX-----
13C CC 135 =l,5
131 CO 132 1=2,NTUE-

SKUP(IK =SIGKUP(I,Kl .5* (SIG(Itl +SIG(I,2)I
132 CCTINUE
133 CO 134 I=NANN,IVIN

SKUP(I,K)=SIGKUP(I,K)o45*(SIG(T,1)+SIG(TI2))/SIGOW
134 CCOTINUE
135 CONTINUE

C---------- ENTER MAIN LOOP-----
2CC CC 255 IJK=1,NIT

CO 2E0 K=1,4
C---------- SET UP CLC VALUE AFRAY-----

201 DC 2C4 J=1,JLES
2C2 CO 203 T=1ILES

SKCLO(IJ)=SIGK(IgJ,K
2C3 CONTINUE
204 CONTINUE

C---------- CALCULATE EXPLTCIT TERM S(I,J) -----
210 DO 216 J=2,JITN

JP=J+1
JM=J-1

211 00 215 I=2,MIIN
IP=I+
IM=T-1
R1=RAT1(I)
R2=RAT2(I)

212 XS=SKCLC(IJ)
213 FAPT1=-CC.5*(R*(SKCLC(IPgJ)tXS)*UR (IPJ)i-2*(XS+SKOLO(IM,J))-

Z *UP(I,J)+CC2*((SKOL ( IJP)+XS)*VZ(TJP)-(XS+ SKOLD(IJ ))*VZ(I,J)))
FART4=0.
IF (BETAKECo0ol) GC TC 214
PART4=TERMU(T,J)(SKOLC(TP,J)+SKOLD(IM,J)-S-XS)+TER V(IVJ)-

Z *(SKCLD(I,JP)+SKOLC(IJM)-XS-XS)
214 S(I,Ji=CC17*(PAqT1+CIFFUZ(I,J,K)+PART4I
215 CONTINUE
216 CONTINUE

C----------FIRST HALF DTAU STEP------
220 CO 227 J=2,JMIN

JP=J+1
JM=J-1

221 CC 224 I=2,IMIN
IM=I-1

222 CI(I)=S(I,J)+D1(TJ)*SKCLD(I ,JM)-F.(I,J)SKOLO(I,J)-F1( tJ)-
Z *SKCLC(I,JP)

DEhCV=B1 (I J -61 (I,JihEI(I,)
223 EI(I)=CI(I,J)/DENCM

FII( )=(CI(1)-Al I,J )*FI ( IM ) /CENOM
224 CONTINUE

SKFAF(IMINJ)=FI(IMIN)
225 CC 226 N=3,IMIN
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1= !PMA)-N
SKI-AF( I,J)=FT C I -F! C *SKHAFC I+1,J )

22E CO1'TIftUF
227 CONTINUEF

C---- SECCI\C I-ALF rTAU STEP --
23C DC 23F 1=2,TI'TN

CJ (2 )=VZ(1, 2) *SKOLD (1 91)+P-2(1 .2)* SKCLr)( I t)-V7( 1 3) *SKlLDCJ3 1-
Z -CC34*SK<FAF(192)

FJC2)=(CJ(2)-2.4VZ(1,2)*SI<UP(I,Kfl/(B2(J,2)-V7(1,2)
231 CC 233 J=3,JmNI

JP=J+ 1

2?2 CJ(J)=V7( T,J)*SXCIO( I,JtJIE7(I,J)*.;KCLC( ,J )-VZ( !,JP)-
Z *SKOLNI , JP )-CC 24*SKHAF(I , J I

F(?.CP=B2 J J)-VZUT,J )*J( JM ))/

233 CONTINUE

Z -V7(1,JLESI*SKrJLDCIJLE5)-CC34*SKH4AF(!,JMTN)
EJ( JNIN)=0.

Z -2 0 *VZ(TJLES)-(V7(1,JMIN)+VZ(IJLFS))*EJ(JI~NI)I
235 SICK( !,J?'NvK=FJ(JMIK)
23t DO 237 N=-3,JMIN

J=JN~AX-K'
SIC,KI,J,K)=FJ(J)-EJ(J)*S!GK(T,J.1,K)

237 CCNTINUE
238 CClT INU E
250 CC) 253 j=2,JllTi'
251 DO 252 1=2,ImTN

IF (SICK(IJ,K).LT.Col SIGKCIJ,K)=00
252 CCMIMEF
25? CONTINUE
280 CCNTINUE
2SC IF (NPEACT*GT.oI CALL FRCP8

ICALL BOLNF
295 CCNITUUE

C----------- CALCLATE PEM'ATI ? CUANTITTES --
300 CO 301 J=2,JMIN

CC 301 1=2,HqIN

3CI CDNTINLE
302 CC 3n3 K=194

00 3C3 J=2,JMTN
CO 303 1=2,IMIN
SUtMT,J)sSUP(T,J)+SIGK(I,CJ,K)

3C3 CCIVIINUE
304 CC 3CF J=29JMIN

CC 305 1=2,I1N
S1GNC!,J,NSPECY)=SIC-(1,JI-SLP(TJI

305 CCNTIKUE
30 CO 3 C S =2 J 10 1
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D0 ?01 1=2,1IN
307 CCI\Cl(I 1 Jh=sIrKcI,J,1 )/'CLWT(1)

CCI\C(1,J)=SIGK(1,J,2)/MOLWT(l)
CONC4( I , J)S IGK f T,J 94 MOL MT (4)

C0INC( 1,J )=CCNCI( I, J )+CCNC2( 19,I+C ONC 3( 1j)+cnNC4( I 9J)+C0NC5{ I9J I

tCLFFP(I ,J92I=CCNC2( 1, J)/CCNC (1, J)
FVCLFPf (I J ,3) =CC N'^,3 ( I 9)/CC NC( It,
PMOLFR( I J,4 )=COPCf( I, J) /CC ( T, A
PCLFF( IJ,5)=CCNC5(I,J)/CONC(I,JI

'!C9 CC1YTINULE
C----------- CAIC F'OL WEIGHTS CF PAPTIAL MIXTURES--

310 CO 311 I'=194

CO ?11 J=2,JMTN
CC 311 T=2,IMIN
FLE S( II J K)=(POCLtIX (I J)-?'X*PCLFR T,J,K (Q...MOLFR (IJqKi

311 CONT INUE
312 CALL PCUN(C

RETLRCN
EN C
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C IPESEIT % IEPER PRCC.RAM T PESET OPERATINC PARAPETERS AND MOlNITOR
C VARIABLES bH-EN NAII\ PREGRAN IS FCPTPtNEC WITH ISD=N'
C
C

SUPP.OLTINE RESET
C

IMPLICIT REAL*9!(A-H,C -7)

c

DIVENSICN FR(23 ,'3) ,SIC(23,43),U;R(23 ,43) ,VZ(23,43),-
Z EYE (23, 43 ), ENG( 2?9,43 )

CIPEhSlCh CCLC(23,43),C(23,4?)
DI VEhSI CNP B(23,43)9C (2? 43 1 SCLP,(23,943 1
ETIEtNSIC PF(23,4!),CCflLO( 23,42)
CIVEtN5ICN SCUN(23,43) ,CrNT(23943)
DIMENSION 0(23,43)PEE(23943)
CIFEINSICN RA12),~223,A323)
CIVFNSICK PFTAPl(23 43 ) ,BET AVR( 23, 43 )tPETAVZ7(?39 43)
CIMENSION C-OLD( 23v43)vEYCr)(23q43)v-

Z VZCLC (2? v43 ) URCLN(23,43 )9 FCLC( 23, 4?
DI VEtSI Ch ATI(2-31 ,CI (23 ) D I(23 ),El(23),FT1(231, CJ (43 ),EJ( 43) , FJ(43)
CIMENSION SIGK(23v43,!),SKUP(23t5)
CItVEKSICN CCNC1(23,43hCCNC2(23,43),CONC3(23,43),CDNIC4(23,43),

Z CVNC5(23,4?)
CINEKSICN STGKUP(23,5~),SMITIN(4)
CIPElNSICN RVAVG(23)vSAVCU43,6),PEYUP{2?)
DIMENSION T( 23 943) 9ST ZEN (6 )9SJITUP(23 .4)rAt'UP( 23 ,SMITOW (4)

C
PEtL*B L , LTMICIIT(S ) PUSTAR LLCR rSQ,S IZER (12
PEAL*e MSIAR , MlLRTX ( 23,43)
PEAL*8 KSC(23r4?,4)0MCLFQ( 23,43,5)
PEAL*@ KRE (23 t43 ) NPR (23 43 1 C-APMY (73vA31, CONC( 2?t43J
PEAL*0 MLIFS( 23 94?,4 1 9 RCLFP (23, 5 , WMTXLP (23) ,MLESUP (2394 1
FEAL*8 P'IXINMMIXCW, PLESIN(4), ML ESOR(t4)

C
INTEC.ER OAYITERS(40CCI,SIZEI(1S),SPECIE(6I

C
LCGICAL AINS

C
c

COPPCh/AA/ IMNI ,I PI K, ILES , TAXJPNI JM'IK, JLFS,JMAX
COMMON/BB/EYOLD),VZOLD ,URCLD,ECLO
CCMPCt'/CCIFRI,SITG,LJR,VZEYE,ENG-
COPC/DD/C4 9C6 FPS ,ITEST JTEST. NSTEP,NCOUNT ,ERRORI
COMtJON/EE /PB9 PTIMF 9 TAL
CONFOCNI F F/CCLC, C
COCpIcf/GG/FUppPCpAX, SICUP, SUFMAX DSCIC, VELUP,VUPmAX,ROL, FPEO
COMlCN/H-P/PvCSCLlPUP2,SUP2

CCtPPCN/JJ/AT,8198 2C I C19F IrI ,AJPJ1 ,EJ2,PCJvDJ,EJp FJ, CC41, CC4?
CCP'MCK/KK/SOUN, CONT
CfltVCN/ LL/ EYST A,RCULT, EULNO,REYND ISTR CNC, SMITNO, PRANNO9 \MEF
COPPON/?M/QENEf.'
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CCPPCK/NN/PSTtRvr.CSTARMUSTAPMOLWTTMCOMP

CCPPCN/CC/CTAUICYrEPPCPPFITF!FTSPSTPETAMBETAVPETATP.ETAYDCFI
CClifiCN/CC/EKC(-IEFCC15,CC17,CC329C(-?!,CC34tCC35-CC?(--ICC'47
CCFVCN/RP/NTRTTE, fTMAX9Nl3RITENFLUNPRCENRN'LNTNITEPNnUT

COMPON/ S/7AUENDNRITEKTAOEtNSAVEKFTPPE

CCPPCK/TT/C-CL 0, FET A14T , 2 ETAVR9 RETAVZ # J START

CCVVCK/ lp/RATI, vPhT2
COMMON/ Y/RINVfhtVCLTKTUBEiNANN
CCliPCN/YY/CTCLCNCTAUNINOLDNYCLO

CCPVCN/AB/P TARTSTAPCSTARCVSTARCC3ESPECTC-

COMMON/AC/NREN'PR,(7,AMIdYvMOLt'IXCCNC

CCvpcK/Ac/NSC
CCPIP'CN/AE/CC2 9CC8 CC9qCC16tNFROP9NSPFCY, KSPFCMULT IDoNYNTNNREACT

COMVON/AF/SIGKvPOCLFR
CCPPCN/tC/CCNCICCNC2tCCNC3vCONC4,CONC!5
COP91ICK/AH/SIGKUFSKUP
CCPVCN/AI/RVAVCqSAVC
CCFPCK/AY/CC26,CC27
CCPPCN/AL/MLESTGAPINtGAMCU97EPPOWiST7FX
CCIOtiCN/AM/MOLFUPMMTYLPMLr'-zUP, SMITUPGAvUPjSMITINS19ITOWt-

z REYKINREY CWREYUP
COmf'ON/AN/fJ19IXThMMI XC%%,FILESI , FLESEW

CCPPCN/AC/EYEOWENGOWSIGOWgTPOW

c
100 IF (NOTAU*EQoO) RETURN

ETCLC=CT,6U

NINCLD=Nlh
NYOLD=NY
PAUSE IRESET C TAU, CCI-I, NIN, NY9 C NTRITE*l

RETURN
ENC
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C PIT!T -WIMPE SUORCUTINE RITE FOR~ FMTX C 6 PRnGRAPIS. DISPLAYS EXTRA ARPAY
c CCLC, 8, 0, G9, & SCUN IF NPUG=l CENTAINS WRITF R~tITTINS
C FCR LATER TAPE STCRAGE. WRITES CCNCENTRATICKN ARRAYS*
C

SUPPCUTINE RITE

ItFFL1CI 1 REAL*S(A-H ,C-Z)
REAL*A VZSTCR,URSTflR,pRsToR,SGS1C;R,TPSTCR,T~TPA
PEAL*4 PVAVCSAVG
REAL*4 CASTCR,CISTOR,C2STCR ,C3STCR,C4STCF,C5STOR

C
tlt'ENSICt' FB(23,43), FF(23,43),SIC( 23,43I,UR(23,43),VZ(23,43),-

Z EYF(C23,43) ,ENN,21,42)
E!P'ENS ION CCLC(23,43),C*(23,43),CONC( 239A?)
CIPENSICK E(23,43) ,O(23,43),SCLC(23,43)
CIMENSICN SOUN( 23 43)9CONT ( 23 4?!)EYE ( 23 43 )ENGN (23 43
CTPENSICN V7STOR (23t,4 ,I100), URSTOR (239439100) PR STOR( 23 43 .On)-

z SGSTCR(23,43vlOC) ,TPSICP(23,43itOO)
CIMENSION T(23,43),TIPE(Or)qNTT(10O)
CIP~EKSTON CCNCI(23,43),CCNC2(23,43),OONC3(23,43),CONO'd 23,411)

Z CONC5( 21,42)
CIMENSICN CASTOR(2',4!,10C,C1STOR(23,43,IlOO),C2STOR(23,43,100),-

Z C3STCR(23,4391O)O),C4STCP(23,431OO)C5STOP(23,43,IOC)
DIVENSION CON(23943) ,R'fAVG(23hoSAVG(43,6)

REAL*8 MUS1ARvt'STARLTMJCLWT (5),MOLPMX(2?,43),MLES(23,43,41,STZFX( .-)
REAL*0 NRE(23,',3),NPR(23943),GAN~t'Y(23,43)

c
INTEGEFR DAY.SPECIF(6)

c INTEGER NAlJF(14)I4H C14H 0%4H C94H G,4HSOUN,4H PB.:4!TFtAP,
C 1'AH PR,4- SIGv4H- UR,4F VZ,4IFEYEN,4HFNGK,4HCflNT/
cc

CAALOkI,LeW?/I,2/
C

CflMPON/AA/IPhlI DIN,TLFS,IMAX ,JMiNI,J'IIN,JLES,JMAX
COMMON/CC/PRSIGqURtV7vFYE,ENG
CCPPCN/FE/F6,*PTME,TAUl
CCPPCN/FFJCOIO ,C
COMMON/C-G /PUP ,PUP P'AX, !IGUP,9 SUPM AX 9fl SCI ft VC-LUF ,VUPM AX ,RCL9 FR EC
COFVONfHt/EvCSCIOFUF2,SUP2
COMPlCN/II /NEUGi'RUNFdCNT4,CAY
COPMMON/KK /SOUN,CCNT
CCOPN/LL/EYSTR,PCUT,LT,EULN,REYNnSTRON0,SMITND,PRANNO,VREF

* CCIICN/N/PSTAR,SGSTAP,LSTR,MCLWT,INCPP
COPFCN/CCOIDTU, 7CYC, ERROR, ,PITHE TA 9PSI ,FE1AfM,BETA Vq FTAT 9PFTAK, Cr,14
COPNfC/P/NTRITEITPAXNPITE,NFLU,NPROR,NP,NL,NT,NI-TER,NOUT

* COC/S/AUENO,NRITE ,NTAPE ,! SVE,NFIPPF
CCt"VON/XX/ IN, V TNVOUI,NTUBEgNA NN
CCPICN/E/tSTARTSTR,CSTA,CVST AR ,CC3 9,SPFC TF
COMMON/AC/NRE,NPR,GAM'?"YdOLMTIXCCNC
CtCOO/E/CC2,CC,CC00C16,NPROP,NSPECY,NSP-C,MULTID,NY,NN\,NQE&CT
COJf'CN/AC/CCt'C1 CCNC2 9CCNC3,CCNC4,COCC
COMMON/A! /RVAVGvSAV,
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CCPC/AL/LES,T,GAPTF,CAMOWTEMPOWSIZEX
CCMMCN/AO/EYECWENGCS IGCW ,TFOh

C
2 FOPMAT(IFCT2,'RUN *'12,' ON '12,'/*I2,'/72')
3 FORMAT(2HC ,'INCREMENl SIZES DT PESICNS DIMENSIONLESS . S',-

7 7X,'VELCCITIES',14X,'P, RHO, T*,I1X,tREFERFNCES',7X,'CCNTROLS'/-
Z 72,'----------------- --------------- ----------------. ,-
Z I ------------------- --------- -----------------

Z -------- - ')

4 FORPAT(T2,'0TAL ='IFlOo.4,' RIN ='rCF6.2,' EULNO ='IPD1Oe4,-
7 9 VELUP='OIO.4,' MEAN PUP ='CIO.4,' MEAN PSTAP ='D10.4,-
7 * FFI ='OPF4.21

5 FCPFAT(T2,'CCHI ='1FC10.4,' RCUT ='OPF6.2,' STRCNC= '1Prl.4, -

7 ' ='010.4,' MAX ='D10.4,' PAX SGSTAR='D10.4,-
Z ' TIETA='OPF4.2)

6 FORPAT(T2,'ERRCF ='1PC10.4,' LENGTH='PF6.2,' REYNO ='IP010.4,-
7 1 VIN ='C10.4,' SIGLP='D10.4,' WEAN TSTAP ='010.4,-
Z ' SI ='OPF4.2i

7 FORMAT(T2,'DSOIG ='ID010.4,' n0L ='OPF6.4,' PRANNC='1PC.Oo4,-
7 VCUT ='CI0.4,' ='D104,' MAX MSTAR ='D10.4,-
Z ' BETAk='OFF4.2)

8 FORMAT(T2,'DETA ='1PDIO.4,' TCYC ='OPF6.4,' SMITNO=1IPDO.4,-
7 ' VREF ='C10O4,' TUP ='010.4,' MEAN CSTAR ='010.4,-
S 'I ETIAV='CPF4.21

9 FORMAT(12,'TAUEND='IFDI0.4,' FREQ ='OPF6.2,49Xq'=',IP010.4,-
Z I MPX EYSTAR='010.4,' BETK= 'OPF4.2/1O01, YY ='lPD10.4)

10 FORMAT(1H+,T25,'INCCMPPESSIELE STARTUP CF LAMINAPR FLCW CF 8LCC) -

7 IK AN INFINITE TUEP WITF NC-SLIP WALLS,'/T25,'NO INITIAL PRESSURE-
Z GRADIENT IS SPECIFIEC. FPCPLEM 4l'/)

11 FORMAT(1H4,T25,I'NCOMPRESSIeLE STARTUP CF LAMINAR FLOW OF BLCCD-
7 IN AN INFINITE TUPE WITF NC-SLIP WALLS, '/T25,'A LINEAR INITIAL-
7 PRESSURE GRADIENT IS SPECIFIEC PRCPLEM f2'I/

12 FOPPAT(IF+,T2%,'REMOVAL OF A DIAPHRAGM DIVIDING AN UPSTREAM HIGH-
Z PRESSURE PESERVCIR CF AN ItEAL GAS ANC A OOWNSTREAM'/T25, LOW

-

Z FRESSURE RESERVOIR CF THE SAME GAS IN A CLCSEC-EN' SHOCK TUEE. PRFPLEM 43')
13 FORPAT(1F+,T25,'INCOMPRESSIALE LAMINAR TURE FLOW WITH A COSINE-

2 CYCLIC + MEAN UPSTREAM FRESSURE,'IT25,'FLOW STARTS AT CYCLIC VALUES. oROPLEM 4'l/)
14 FORMAT(IH+,T25,'INCC MPRESSI.LE LANINAP TUBE FLOW WITH A CCSINE-

2 CYCLIC 4 MEAN UPSTREAM PRESSURE, '/T25,'FLOtW STARTS AT REST. PRCRLEM #5'/)
15 FOPVAT(IH+,T25,'INCCMPFESSIeLE LAMTARP TUPF FLOW WITH CONSTANT-

7 LNIFORM INPLT AND INITIALLY UNIFCRM CCWN THE TUPE.'/)
16 FOFrAT(1F+,T25,'SIUJCEN STOPPING OF AN INITIAL PLUG FLOW IN A TURE WHOSE-

Z ENTRANCE ANO EXIT IS ARPUFTLY ELCCKEC.'/T25,'USFO AS A TEST OF THE PRESSURE-
7 FIELC RELAXATICN. PPRBLEM #7'/)

17 FORPAT(1HT25,'INCCMPRESSIPLF LAMINAR TUFF FLOW WITH A CONSTANT CDAXT4L-
Z ENTRY AND INITIALLY LNIFCFLY CCAXIAL CCWm THE T.JF.'/T25,'ECTP FLUIS ARE-
Z INCCMPRESSIELE ANC ICENTICAL EXCEPT FOR VELCCITIES. PRCBLEM 48!/I

18 FORMAT(1l-,T25,'INCCMFrESSIELE LAMINAR TUPF FLOW WITH CONSTANT-
Z COAXIAL ENTRY AND INITIALLY ZERC FLCW OCWN TF TUEE.'/T25,'ROTJ-
7 FLUICS ARE ICENTICAL EXCEPT FOR VELOCITIES. NO-SLIP WALLS PPORLEM #9'/)

15 FCRMAT(1F4,T25,'INCCPPESSILE LAMINAP TUPE FLOW WITH CONSTANT-
7 COAXIAL ENTRY AND INITIALLY ZERC FLCW CCw% THE TUPE.'/T25,'eCTH-
Z FLICS ARE ICENTICAL EXCEPT FOR VELOCITIES.. FREE-SLIP WALLS. PRCBLcM 10'/)
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20 FOPMSAl(14,T25,TNCOtPRESSTPLE LAhTHAg TCFF FLOW WIT' CC~STANT-

7 P-ARA LIC CCAXIAL ENTRY ANC INITIALLY PARABOLIC EXIT VFLOCITY'/T?c,
-

Z' FLLIDS ARE F2 E N2 IN THE CCRE AND 12 C K? IN THE ANNULUS INITIALLY.--

Z CfURCHILL PROBLEM s11'/)
21 FCFPAT(1I+,T25,'CCmPPESSIeL. LAMINAR TUPE FLOW WITH CONSTANT-

Z COAXIAL ENTRY, IDENTICAL FLUICS,'/T25,'AND FLUID INITIALLY AT REST.-

7 PROPLEM 412')
22 FCRPAT(F+,T25,'CPMPRESSTILE LAMINAR TU~F FLOw WITH CONSTANT-

7 CCAXIAL MASS FLCW ENTRY, FLUIC INITIALLY AT FEST.o'/T25,'CENTER FLUID-

Z IS AIR AT 70 CE F, OUTER FLUID HAS CO,C2 C2, C2, H20, ANC N2, ANC IS-

Z HCTo PRCeLEP 413'/)
40 FORMAT(1HCT5,'GRI'',XEX,'PREPLEO TYFF',20X,'LOCP CCNTROLS',11t,-

Z 'WRITE CCNTROL S'/T5,'----- ----------------------------------

7---- -------------------- --------------------- 'I

41 FORMPAT(T ,'NR='T2,' KPRCPA=I?1,' I CCPP='11,' NSPECY='I1,-

z I MULTIC='Il,' NI ='12,' NY ='I2,7X,'NTRITE='I5,-
Z I NRITE='11)

42 FORMAT(T5'NL='I2,' NFLU ='12,' NPRCF ='1l,' NPACT='I1,-

Z ' NFIRFP=uII,' NCUT='12,' ITMAX='15,
r  

NPRITE='IS,-

Z ' hTAPE='I1)
43 FORMAT(IHCTI11,I'SPFCIE',5X,A4,4(6X,A4))
44 FOPMAT(TI1,'CCNC IN ',F6.4,4(4XF64),10OX,'TPOW ='F7.2,-

Z 4X,'EYECW='lPDIC.41
45 FOPMAT(T11,'CONC OUT ',F6.4t4(4XF6.4),1OX,'SIGOW='F7.5,-

Z 4X,'ENGCW='IPO10.4)
50 FORMAT(IHCT6,A4,* ARRAY I='T2,' TC '12,' & J=' 12,' TC 'T2,-

7 1 NT='I4,' NITFR='I4,' TAU='F10.3)
51 FORAT(1F10D13.5)
52 FORMAT(1FCT6,4A,' AXIAL AVERAGES J='I2,' TO '12)
53 FCPVAT(1F0,T2,'TOTALS- ',6(A4,'=',lP012.5,3X))

C
ENTRY RITEA

C
C ----- RITE INITIAL FEACTNGS-----

100 EYv=;YSTAR/(VREF*VREF)
CETA=DSCIG/RCL
lP=(TPO+1. )*TSTAR
WRITE (6,2) NRUN,MONTH,DAY

102 CC TC (1020,102 1 ,1022,1023,1024,1025,1026,1027,1028,1O29,1C3,1030,1031),NPROB
1020 WRITE (6,10)

CC TC 104
1021 WRITE (6,11)

GC TC 1C4
1022 WRITE (6,12)

GO TO 10C4
1C23 WRITE (6,13)

CC TC 104
1C24 WRITE (6,14)

CO TO 104
1025 WRITE (6,15)

GC TC 1C4
1C26 RITE (6,16)

C TC 104
1027 WRITE (61171
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C-C TC lC4
1C2F )RITE (6t18)

Go 10 104
1029 WRITE (6919)

CC TC I.C4
103 AR IT E (E,2C

C-C TC 104
1C00 WRITE (61211

1031 WRITE (6,t22)
104 IF (NSPEC'Y. FQe I C TC 105

C1IN=.5*(CCNCI(2,1)+C0NC1(2,2))
(2IN=.5*(CC!NC2(2,11+CGNC2(2,2))

C4Ih.5*(CCNC4(291)+CONC4(2,2))
C51N~=*5*(CCKC5(2q1)#CCN~C5(2q2))

C2CUT=.5*(CONC2(IMIN,1)4CONC2(I'!N,21)
C3CUT=5*(CCNC3(ItIr~,1),CICC3(IWINt2fl
C40UL=5*(CONC4IMT,1)+CCNC4(IqON,2)l
C5CUT=.5* (CCNC5 ( IN, N1 )4CCNC5( IMIN, 2))

105 iFRITE (6,93
bR HE ( 60) DTAU,RT N ,EULLCVELUF, PUPiPSTR 9P)I
IARITE (695) CCIHI,P0UT, STRCNC,VUPMAXPUPPM6X9 GSTAR tTHETA
bRITE (6,61 ERRCP,LT,FEYNCVIN, SIGUPtTSTAPPSI
WRITE (6t,7 ) OS ~RL9RNrVLSPIX0SAEA
WRITE (6,8) OETA,TCYCSMOITNCVREFTUP,CSTAR,SETAV
WARITE (6,S) TAUEI\O,FREC tTUP06Y, EYS7AA ,PE'TAI( EY
WR IT E (69 A-0)
WRITE f(6,41 ) NR NFPCB, INCOMP vNSPFCY , VULT IN NTN, NY,NTRI TENR TF
iR I TE ( 6,42) NL ,NF LU9N P RCP 9N RE ACT ,NF I PFPNCUT , TM AX,NPR IT F,NT APE

1050 IF (FSPECY.EQ.1) GO TO 106
WRIIE (6,43) SPECIE
IfRITE (6,44) ClIK,C2II,C3INC41N,C91IN,TF,EYE-CW
WRITE (6,45) CIOITC2(OUT,C3rJUT,C40UTCSOLT,SIGOW,ENGOW

106 IF (NTAPE.EC.0) GC TC 109
106C CO 1067 N=1,10
1061 CC 1065 J=]V,43
IC62 DO 1064 1=1.23
1063 VZSTOR(I,J,N)=O.

UPSTOR( IJdi)=0.
PRSTCR(I ,M=0.
SGSTCR ( I IJ, N1 I0.
TPSTCP(I,JtN)=O.

1C64 CCIIINE
1065 CCIKTINUE
1.C66 IF (NTT(N).EQo0) CC TC 107

1067 CCKTIF'LE
107 iRRITE ( 12 ) PUP tPUP.tVAXPCLTCOTAU EULNC,C0I-ISIGUP9SUPMAX LT, CSoIC,-

Z REYNC, PIT, V ELUP, VUPMAX, TCYC,ROL, ERRCR, THETA, VRFFR EQ, STRCNO,EF TAM,-
7 eETAW,EETAI,RET6KSPITCVlr~,VCT,RIN,PS1AR,SCSTAP, EYSTAP,FYY,TAUrMD0,-
Z NTR ITE,NTAPENL,ITMAX,NFL',NPRI TE,NFRCF,PEACTd1\YNlNNSFECY,MULTIn,-
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Z hPITE,NPfFICF,SPECIEKNCUL,FIRPNSAVE,T CCtP,MONTH,DAY,NRUN
C

ENTRY RITEE
C
C ----- RIIE DEBUG APPRAS -----

EYY=EYSTAP/(VREF*VRFF)
IC9 IF (hRITEoECo 0) GC TC 500
110 IF (NBUCoNEol) GC TC 2C0

C 111 WRITE (6,50) NAFE(1),LCW2,ILESLOESLOWJLESNTNITERTAU
C 112 DO 113 J=I,JLES
C WRITE (6,511 (QOLOD(,JII=2,ILESI
C 113 CCNTINUE
C 114 VRITE (6,5C) hbE(2ILCIW2,ILESLOW2,JLESdT,NITERTAU
C 115 CC 116 J=2,JLES
C PRITE (6951) (B(IJ)9l=2,ILES)
C 116 CONTINUE
C 117 WRITE (6,50) NAMF(3),LOW2,ILES,LOW2,JLES,NTNITERtTAU
C 11e CC 11s J=2tJLES
C hRITE (6,51) (D(I,J),lI=2 ILE!)
C 119 CCNTINUE
C 120 hRITE (6,50) NAVE(41,LCW2INLW2 INOW2JPINT,NITERTAU
C 121 CO 122 J=2,JMIN
C WRITE (6,51) (G(I,J),I=2,1MIN)
C 122 CChTINL'E

IF (INCOMP.EQ.11 GC TC 400
C 123 bRITE (6,50) NAtIE(5),LCW2,IMINLOW?,JMIN,NTNITERTAU
C 124 00 125 J=2,JYIK
C WRITE (6,51) (SOUN(IJ)I=2,ITIN)
C 125 CCNTINUE
C ----- tAIN WRITECUT-----

200 CCNTINUE
C 201 RPITE (6t50) NAE(6)LCW2?ILESLOWIJLES.NT,NTTER.TAU
C 202 00 203 J=1,JLES
C WRITE (6,51) (PP(I,J),I=2,ILES)
C 2C3 CCNTINUE
C ---- TRANSFORM vAPIABLES-----

300 IF (INCCOMPFOol GO TO 4CO
CO 3C3 J=1,JLES

301 CO 102 I=1,ILES
EYEN(I,J)=EYE(IJ)/EYY
ENGt(I,J)=EG(TII,J)I/EYY

302 CONTINUE
303 CCONTINUE
400 IF (KRITEEC*O) GC TC 500

C 401 WRITE (6,50) NAME(8),LOW2,IMINLOWIJLES,NT,NITERTAU
C 402 CC 403 J=1,JLES
C WRITE (6,51) (PR(IJ),=2,ItIN)
C 403 CCNTINUE

IF (INCCVFEQ9 1 ) GC TC 407
'C 404 WRITE (6,50) KNAPE(9),LCW2I MIN,LOW1,JLES,NT,NITER,ThU
C 405 CC 406 J=1,JLES
C bRIiE (6,511 (SIG(ITJ),=2 IPIN)
C 406 CONTINUE
C 407 WRITE (6,50) NAME(10 )LOW2,IMIN,LOW1,JLES,NTNITERTAU
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C .4CE DO 4CS J=I,JLES
C WRITE (6,51) (UR(I,Jl,I=2,IMIN)
C 4C0 CCNTILE
C 410 RITE (f,5C) NA PE(11),o2LC2,I IN Lt01,JiJAX,hT,NITER,T4U
C 411 CC 412 J=I,JMAX
C WRITE (6951) (VZ(IJI)I=2,9t'IN)
C 412 CONTINUE

IF (ITCC'FQEQ.1) GC TC '422
C 412C WRITE (6,5C0 NAIE(131,tCk2,IIN,LCW1,JLtE,NT,NITER,TAU
C 4121 CO 4122 J=1,JLES
C WRITE (6,51) (E hGhI,J) I=2,IMIN)

.C 4122 CChOTINUE
C 413 WRITE (6,50) NAME(12),LOW2,IMIN,LOh,JLES,NT,NITEP,TAU
C 414 CC 415 J=1,JLES
C WRITE (6,51) (EV EN(T,J),T-2,ININ)
C 415 CChTINUE

416 WRITE (6,50) PA F(7),LOW2,I"IN,LCW1,JLES,NT,NITER, TAU
417 00 41e J=IJLES

WRITE (6,51) (T(I,J),I=2,1MIN)
418 CCKTIhtE

C 422 WRITE (6,50C) NAE(14),LCR2,1~INtLOW2,JPIN,NT,N1TEP,TAU
C 423 CO 424 J=2,JMTN
C WRITF (6,51) (CCNT(IJ)I=2, 1I
C 424 CONTINUE
C---------- WRITE CONCENTRATICN ARRAYS-----

450 IF (NSPECYoEO.1) GC TC 500
451 WRITE (6,50) SPECIE(1),LOW2,IMIN,LOW1,JLFS,NT,NITER,TAU
452 CO 453 J=I,JLES

WRITE (6,51) (CCNC(I,J)l,I=2,1MIN)
453 CONTINUE
454 WRITE (6,50) SPECTE(2) ,LCW2,IMIN,LOWI,JLES,NTNITER,TAU
455 DO 456 J=1,JLES

WPITE (.6,51) (CONC2(I,JI=2,IMIN)
456 CONTINUE

IF (NSPEC'EQ.E2) GO TC 466
457 WRITE (6,50) SPECTE(3)LCW2, IMIN,LOWIJLES,NT,NITER,TAU
458 DC 459 J=1,JLES

WRITE (6,51) (CCKC3(IJ),I=2,IMIN)
459 CONTINUE

IF (hSPEC'oEC.3) GC TC 466
460 WRITE (6,50) SPECIE(4),LOW2,IMIN,LOWI,JLES,NT,NITFRTAU
461 CC 462 J=1,JLES

WRITE (6,51) (CCC4(I,J,I=2,IMIN)
462 CCTINUE

IF (NSPECY.EC.4) GC TC 466
463 WRITE (6,50C SPECIE(5),LCW2,IMIN,LCW1,JLES,KT,NITER,TAU
464 CC 465 J=1,JLES

WRITE (6,51) (CCO C5(I,J),I-=2 IMIN)
465 CONTINUE
466 WRITE (6,5C) SDECIE(6),LOW2,IWIN,LCW1,JLES,NT,NITERTAU
467 CO 468 J=1,JLES

WRITE (6,51) (CCN'C(I,JIs2,IV~I3
468 C&OTINUE

C---------- CCPL'IE CONCENTRATIC AVERAGES-----
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470 IF (NSPECY*EQol1 GO TC 500
471 CO 481 J=2,JFTN

JP=J+1
472 CC 474 1=2, TMIN

IP=I+1
473 RVAvG(I)=.25*( I-I)*(VZ(I,J)+VZ(IP,J)+V7( IJP)+VZ(IP,JP '*OSCIG

474 CCNTTNUE
GC TC (5CC,478,477,476,475)vSPECY

475 K=5
CALL SIPFLE (CCKC5,J,K)

476 K=4
CALL SIPPLE (CONC4,JK)

477 K=3

CALL SIFPPLE (CCPC3,J,)
478 K=2

CALL SIPFLE (CONC2,J,K)

479 K=l
CALL SIPLE (CONC1,J,K)

480 K=6
CALL SIPFLE (CCCJ9,K)

481 CONTINUE
482 SUF1=0

SUF 2=C.
SUM3=0,
SUP4=O.
lP 5S=0.
SUM6=C.

483 CC 485 J=2,JMIN
484 SU I.=SUP 1+ S AVG ( J, 1)

SUM2=SUM2+SAVG(J, 2
SUP3=SU3+SAVG(J, 3)
SU'4=SUP S+SAVG ( J 4)
SUHS=SU'5+SAVG(J 5)
SUF6=SU6+SAVG( J,6)

485 CCNTINLE
486 SUI=SUP1/JMNT

SUM2=SU P2/J 'NI
SUP3=SUP3/JpI
SUf4=SUP4/JMNI
SUV5=SUl5/J ON
SUV*=SUP /JONI

C----------WRITE RADIAL AVERAGE CONCENTRATICN ARPAYS-----

490 bRITE (6,52) SPECITE(),LCW2,JMIN
hRITE (6,51) (SAVG(Jv1),J=2,JWIN)

491 WRITE (69521 SPECIE(2),LOW2,JmIN
WRITE (6,51) (SAVG(JJ2),J=2,.JIN)

IF (NSPEC'oF0.2) GC TC 4 9 5

492 WRITE (6,52) SPECIE(?),LOW2, JIN
VRITE (6,51) (SAVG(J,3),J=2,JMIN)
IF (NSPECY.EQa31 GO TC 495

493 WRITE (6,521 SPECIE(419LCW2,JMIN
WRITE (6,51) (SAVG(-J,4),J=2,JVIN)
IF (NSPECY.EOo4) GC TC 495

494 hPITE (6,52) SPECIE(5),LCW2,JMIN
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WRITE (,51) (SALG(JC ,J=J Ti)
495 WRITE (6,52) SPECIE(61LCW2,JMIN

WRITE (6,51) (SAVG(J,61) J=2,JPIN)
496 kRITE ( 6,53) SPECIE(I1) SUM1,SPECIE(2) SCUP2,tSPECIF (3),SUM3,-

Z SPECIF(4),SUM4,SPECE(5),SUM5,SPECTE(61SLM6
C---------- STCRE VALUES FER TAPING-----

500 IF (ITAPE.ECo0) GO TO 6CC
IF (NToEC*0) GO TC 600

501 DO 5C7 J=1,JLES
502 CC 506 I=1,ILES
503 VZSTOR( IJtTI=VZ(I,J

URSTOR(I ,JNT)=LR(I,J)
PRSTCR(IJNT)=PR(ItJ)

504 IF (INCCPf.EQol) CC TC 5050
505 SGSTOR(IJ,NT)=SIG(I,JI

TPSTCR(IJNT)=T(I,J)
5050 IF (NSPECYaLTo2) GC TO 506

CASTOR(I J,NT)=CCNC(I J)
C1STO( I,J,NT)=CONCI ( J)
C2STCR(IJT)=CCNC2(IJ)

5051 IF (NSPEC',EQo2) GC TC 506
C3STCR(I,JNT)=CONC3(I,J)

5052 IF (hSPECYcFQo3) GC TC 506
C4STOR(I,JNT)=CONC4(IJ)

"5053 IF (KSPECY.EQ.4) GC TC 506
CSSTCR(IJvNTI)=CCNC5(I,J)

506 CONTINUE
507 CONTINUE

TI E (T)=TAU
NTT(NT)=NT

510 WRITE (12) NTT(NT),TIVE(NT)
511 I-PITE (12) ((V7TOR(TJdXTI =i ILFS),J=1,JLES)

WRITE (12) ((URSTOR(IJ,NT) IS=1,ILES),J=1,JLES)
WRITE (12) ((PRSTCR(IJ,NT)II=1ILES),J=1,JLES)

512 IF (INCOMPeFQel) GO TC 514
513 WRITE (12) ((SGSTOR(I,JNT),I=1,ILES),J=I,JLES)

WRITE (12) ((TPSTOR(IJ,hT),I=1,ILFS),J=ItJLE S)
514 IF (NSPEC*oEQol) GO TC 6CC

WRITE (12) ((CASTOR(TIJ,NT),I=1,9ILS),J=1,JLFS)
RITE (12) f(CISTCR(I ,JN\TI,=1,ILFS),J=19JLFS)

WRITE (12) ((C2STOR(I,J,NT),I=1,ILFS)tJ=1,JLES)
515 IF (NSPECY.Fec.2 GC TC 600

WRITE (12) ((C3STCR(I,J,I Tl vI=1 ILES) J=1,JLES)
516 IF (NSPECYoEOQ3) GO TO 60C

WRITE (12) ((C4STCP(I,J,NT),I=I,ILFS),J=1,JLES)
517 IF (,SPECfoFC.4) GO TC 600

WRITE (12) ((C5STOR(I,J,NT),I=1,ILES),J=1,JLESI
600 RETURN

END
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C SIPFS - WIEBER SUPRCtJTTNE SIMPLE FOR IJSINC- eSIPSONS 1/3RD AND A/PTHS
C RULE TO CALCULATE RADIUS bVERAGE CCNCENTRAT ION FLUXES
C

SUERDLTINE SIFFLE (CCV',JqK)
C

PEAL*8 CCN
C

CIMENSION RVAVG(23),PCINT(233 ,CCN(23,43) 1 SAVG;(43,6)
C

COMMOON/Ah/ It I, IMIN, T. EStIM AX,JP/NliJ IJIE SJM AX
COMMON/A! /RVAVG,SAV;

C
100 CC 101 1=2,TMTN

POINT ( I) RVA VG(T I CCUI9J1+CCN (TI J) I
101 CCKT!NUE

SUM=0.
102 IF (MOD(ILES92I.WF.CI GC TO 103

IFIPST=2
GC TC 104

103 SUM=. 375*( ?.*POINT(2) +3. *PCT N7 (3) +PCINT(4)
IFIRST=5

204 CC105 T=TFIRST91MI\T,2
SftPOINT( !-1)+4,*PD)INT(IJ+PCINT(1+1.))/3.
SUP'=SUF+S

JC5 COK~TIN'UE
106 SAVC-(JfK)=SUM/T'J'!

RETURN
END
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